跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/26 01:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭麗靜
研究生(外文):Peng, Liching
論文名稱:白蛋白與幾丁寡醣複合奈米粒子作為胰島素之經皮傳輸
論文名稱(外文):Albumin-Chitosan Oligosaccharide Hybrid Nanoparticle for Transdermal Insulin Delivery
指導教授:黃克峰黃克峰引用關係
指導教授(外文):Huang, Kehfeng
口試委員:黃克峰官常慶劉繼賢杜建勳張乃方
口試委員(外文):Huang, KehfengKwan, ChangchinLiu, ChihsienTu, CheinhsiunChang, Naifang
口試日期:2013-07-24
學位類別:博士
校院名稱:靜宜大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:116
中文關鍵詞:油包水奈米乳液奈米粒子粒徑相轉移溫度奧斯華熟成幾丁寡醣牛血清白蛋白交聯劑胰島素經皮輸藥系統
外文關鍵詞:Water-in-oil nanoemulsionNanoparticleParticle sizePhase inversion temperatureOstwald ripeningChitosan oligosaccharideCross-linking agent,Bovine serum albuminInsulinTransdermal drug delivery system
相關次數:
  • 被引用被引用:3
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究第一個目的是研發新的製備奈米乳液系統,這個油包水奈米乳液系統採用isohexadecane為油相,和混合型非離子界面活性劑,與純水為原料,並以相轉移溫度法乳化而成的。影響polyoxyethylene- 2 lauryl ether (C12E2) 和 polyoxyethylene- 4 lauryl ether (C12E4)加在isohexadecane中於水中乳化有系統地被研究。並評估兩種界面活性劑的混合濃度和油重量比,利用光譜分光鏡測粒徑;也利用奈米乳液系統的屬性,求出親水-親油平衡值的溫度和相圖。而乳劑穩定性的製備被評估是依粒徑是否會隨著時間而變;奈米乳液系統不穩定的機制包括聚合與奧斯華熟成,另外奈米乳液中兩種界面活性劑的混合,比單獨的更穩定與更可得到較小的粒徑。其實驗結果得到油包水奈米乳液之理想配方為isohexadecane /C12E2/C12E4/水(70:6:4:20) wt%,且穩定性高可維持200天。
第二個研究目的是配製牛血清白蛋白和幾丁寡醣複合奈米粒子作為胰島素之載體,而這個奈米粒子的製備,包覆胰島素之效率與体外經皮穿透的系統被研究。這個牛血清白蛋白和幾丁寡醣複合奈米粒子被合成,靠油包水型奈米乳液當作模板和使用EDC當交聯劑。這個複合奈米粒子是使用相轉移溫度的程序和離心法收集而成的;且這個複合奈米粒子的屬性是依照他們粒子型態及表面電位而定的。我們發現這個牛血清白蛋白和幾丁寡醣複合奈米粒子包覆胰島素的效率是88.5%,和經豬皮穿透通量為81.04 (μg /cm2 hr)。這個理想奈米粒子被製成的程序是在pH 5.5下,使用4%牛血清白蛋白、2%幾丁寡醣和2% EDC反應2小時。此包覆胰島素的奈米粒子也顯示了成功的經豬皮穿透量,和持續的緩釋胰島素,所以我們的結論是明顯地此複合奈米粒子可作為胰島素經皮傳遞之潛能。

The first aim of this study was to develop a novel system for nanoemulsion preparation. The formation of water-in-oil (W/O) nanoemulsions in isohexadecane /mixed nonionic surfactant/water system has been achieved by a using the phase inversion temperature (PIT) emulsification method. Effects of polyoxyethylene- 2 lauryl ether (C12E2) and polyoxyethylene- 4 lauryl ether (C12E4) on the water in isohexadecane emulsions were systematically studied. Ratios of the two-surfactant mixture, surfactant concentrations, and oil fraction were evaluated by gauging droplet size with the aid of photon correlation spectroscopy. Hydrophilic–lipophilic balance temperature (THLB) and phase diagram were used to characterize the nanoemulsion system. The stability of the emulsions prepared was assessed based on the change in droplet size as a function of time. Instability mechanisms including coalescence and Ostwald ripening for the nanoemulsion system are discussed. The addition of a second surfactant could provide more stable nanoemulsions with the minimum size than only one surfactant. The nanoemulsion composition was optimized and found to be highly stable over a 200-day storage period. The optimum composition for W/O nanoemulsion is isohexadecane/C12E2 /C12E4/water (70:6:4:20) wt%.
The second aim of this study was to prepare the chitosan oligosaccharide (COS) and bovine serum albumin (BSA) hybrid nanoparticle for insulin delivery. The nanoparticle preparation, insulin encapsulation efficiency (EE) and in vitro skin permeation were systematically investigated. The BSA/COS hybrid nanoparticles were synthesized by using water-in-oil (W/O) nanoemulsion as the template and using 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide hydrochloride (EDC) as the cross-linking agent. The hybrid nanoparticles were collected by using the phase inversion temperature procedure and centrifugation. The hybrid nanoparticles were characterized with respect to their particle size and zeta potential. We found that the encapsulation efficiency of insulin on BSA/COS hybrid nanoparticles was 88.5% and the permeation flux was 81.04 μg /cm2 hr in porcine skin. The optimal procedure for nanoparticle preparation was 4% BSA, 2% COS and 2% EDC at a pH 5.5 condition reacted for 2 hours. The insulin-loaded nanoparticles showed a successful permeation through the porcine skin and the sustained release for insulin could be obtained. Our results highlighted the potentials of the hybrid nanoparticles for the insulin transdermal delivery.


口試委員審定書 I
論文授權書 II
誌謝 III
中文摘要 IV
英文摘要 VI
縮寫表 VIII
目錄 IX
圖目錄 XIV
表目錄 XIX
壹、 緒論 1
一、 奈米藥物載體 1
1-1 微粒包覆技術 1
1-2 奈米藥物載體 2
1-3 藥物控制釋放簡介 5
1-4 傳統奈米藥物載體製造方法 8
二、 生物高分子 12
2-1 奈米藥物載體材料 12
2-2 水膠 14
2-3 幾丁質(chitin)和幾丁聚醣(chitosan) 16
三、 微乳液系統 21
3-1 微乳液的性質 21
3-2 微乳液之應用 24
3-3 本研究所用的微乳液系統 25
3-4 HLB 溫度 26
四、 藥物控制釋放動力學模式 27
4-1 零級釋放動力學模式(Zero order release kinetics model)27
4-2 一級釋放動力學模式(First order release kinetics model)29
4-3 Higuchi 間質釋放動力學模式 30
五、 經皮吸收簡介 31
5-1 皮膚 31
5-2 經皮吸收 33
5-3 促進經皮吸收之方法 36
5-4 經皮輸藥優點 37
5-5 經皮輸藥面臨的挑戰 37
5-6 豬皮模擬人類皮膚 39
六、 本實驗所用模式藥物簡介 41
七、 所用測量儀器方法之理論 44
7-1 粒徑測量 44
7-2 穿透式電子顯微鏡技術 45
7-3 表面電位測量(zeta(ζ)potential) 47
貳、 研究目的 49
參、 實驗方法 50
一、 實驗藥品及儀器 50
1-1 實驗藥品 50
1-2 實驗儀器 51
二、 實驗步驟 52
2-1 製備程序 52
2-1-1 測定微乳液之相轉移溫度 52
2-1-2 幾丁寡醣(COS)之製法與分析 53
2-1-3 奈米粒子之製備 55
2-1-4 分離程序 56
2-2 實驗流程程序 57
2-2-1 粒徑大小、多分散指數與表面電位之測定 58
2-2-2 以穿透式電子顯微鏡(TEM)觀測奈米粒子的結構 58
2-2-3 模式藥物牛血清白蛋白與胰島素的檢量線製作 58
2-2-4 包覆效率(Encapsulation Efficiency,EE)的測量 61
2-2-5 體外經皮穿透 63
2-2-6 細胞刺激性實驗 65
肆、 結果與討論 67
一、 針對微乳液之組成做探討 67
二、 混合型界面活性劑粒徑大小、分散指數和THLB的探討 69
三、 油的重量比值和界面活性劑的濃度影響奈米乳液之粒徑大小與穩定性 79
四、 乳劑不穩定的機制和三相圖探討 82
五、 測BSA/COS複合奈米粒子之粒徑、多分散指數(PDI)與表面電位的變化(n=3) 87
六、 BSA/COS複合奈米粒子之包覆效率的測量 89
七、 BSA/COS複合奈米粒子之體外經皮穿透 90
八、 BSA/COS複合奈米粒子以TEM測得外觀 92
九、 BSA/COS複合奈米粒子之細胞刺激性試驗 95
十、 BSA/COS複合奈米粒子包覆胰島素之細胞刺激性試驗 96
十一、 BSA/COS複合奈米粒子載運胰島素之包覆效率的測量 97
十二、 BSA/COS複合奈米粒子載運胰島素之體外經皮穿透的結果 98
伍、 結論 100
陸、 參考文獻 103

R. Gref, A. Dombb, P. Quelled, T. Blunk, R. H. Miillerd, J. M. Verbavatz, and R. Langerf, “The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres”. Advanced Drug Delivery Reviews, 16 (1995) 215-233.
Y. Nishioka, and H. Yoshino, “Lymphatic targeting with nanoparticulate system”. Advanced Drug Delivery Reviews, 47 (2001) 55-64.
R. J. H. Stenekes, A. E. Loebis, C. M. Fernandes, D. J. A. Crommelin, and W. E. Hennick, “Controlled release of liposomes from biodegradable dextran microspheres: A novel delivery concept”. Pharmaceutical Research, 17 (2000) 690-695.
B. Kriwet, E. Walter, and T. Kissel, “Synthesis of bioadhesive poly(acrylic acid) nano- and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates”. Journal of Controlled Release, 56 (1998) 149-158.
C. Chavany, T. L. Doan, P. Couvreur, F. Puisieux, and C. Helene, “Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides”. Pharmaceutical Research, 9 (1992) 441-449.
M. Fresta, G. Fontana, C. Bucolo, G. Cavallaro, G. Giammona, and G. Puglisi, “Ocular tolerability and in vivo bioavailability of poly (ethyleneglycol) (PEG)-coated polyethyl-2-cyanoacrylate nanosphere -encapsulated acyclovir”. Journal of Pharmaceutical Sciences, 90 (2001) 288-297.
P. Couvreur, B. Kante, M. Roland, P. Guiot, P. Bauduin, and P. Speiser, “Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties”. Journal of Pharmacy & Pharmacology, 31 (1979) 331-332.
L. Robert, “Drug delivery and targeting”. Nature, 392 (1998) 5-10.
E. U. Kathryn, M. C. Scott, and S. L. Robert, “Polymeric Systems for Controlled Drug Release”. Chemical Reviews, 99 (1999) 3181-3198.
R. C. Pinto, J. N. Ronald, J. R. Antonio, and V. Francisco, “Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles”. Nanomedicine: Nanotechnology Biology, and Medicine, 2 (2006) 8-21.
姜佳函, “奈米海藻膠囊之製備與應用”. 靜宜大學碩士論文, (2006).
B. P. Lisa, “Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery”. International Journal of Pharmaceutics, 116 (1995) 1-9.
A. Rieux, V. Fievez, M. Garinot, Y. Schneider, and V. Préat, “Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach”. Journal of Controlled Release, 116 (2006) 1-27.
S. W. Choi, H. Y. Kwon, W. S. Kim, and J. H. Kim, “Thermodynamic parameters on poly(D,L-lactide-co-glycolide) particle size in emulsification-diffusion process”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 201 (2002) 283-289.
Z. Leyang, H. Yong, J. Xiqun, Y. Changzheng, L. Wei, and Y. Hua, “Camptothecin derivative-loaded poly(caprolactone -co-lactide)-b-PEG -b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice”. Journal of Controlled Release, 96 (2004) 135-148.
葉明熙, “水膠之生醫應用技術”. 化工資訊與商情, 13 (2004) 42-47.
Y. Wu, W. Yang, C. Wang, J. Hu, and S. Fu, “Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate”. Pharmaceutical Nanotechnology International Journal of Pharmaceutics, 295 (2005) 235-245.
莊仲揚, “幾丁聚醣於生醫產業上的應用”. 化工資訊與商情, 38 (2002) 46-50.
H. Radi and A. Mansoor, “Chitosan-based gastrointestinal delivery systems”. Journal of Controlled Release, 89 (2003) 151-165.
Z. Dao, Z. Lina and G. Shenglian, “Mechanisms of lead biosorption on cellulose/ chitin beads”. Water Research, 39 (2005) 3755-3762.
R. Marguerite, “Chitin and chitosan: Properties and applications”. Progress in Polymer Science, 31 (2006) 303-632.
M. Zhang, X. H. Li, Y. D. Gong, N. M. Zhao and X. F. Zhang, “Properties and biocompatibility of chitosan films modified by blending with PEG”. Biomaterials, 23 (2002) 2641-2648.
G. Quan, W. Tao, C. Colette and M. C. Paul, “Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery”. Colloids and Surfaces B, 44 (2005) 65-73.
J. Berger, M. Reist, J. M. Mayer, O. Felt and R.Gurny, “Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications”. European Journal of Pharmaceutics and Biopharmaceutics, 57 (2004) 35-52.
Q. Lifeng and X. Zirong, “In vivo antitumor activity of chitosan Nanoparticles”. Bioorganic & Medicinal Chemistry Letters, 16 (2006) 4243-4245.
溫筱宛, “維生素C奈米幾丁聚醣膠囊之製備”. 靜宜大學碩士論文, (2007).
S. Sano, K. Kato, and Y. Ikada, “Introduction of functional groups onto the surface of polyethylene for protein immobilization”. Biomaterials, 14 (1993) 817-822.
T. P. Hoar, and J. H. Schulman, “Transparent water-in-oil dispersions: the oleopathic hydro-micelle”. Nature, 152 (1943) 102-105.
L. M. Jayne, and G.D. Reesb, “Microemulsion-based media as novel drug delivery systems”. Advanced Drug Delivery Reviews, 45 (2000) 89-121.
M. Boutonnet, J. Kizling, P. Stenins and G. Marie, “The preparation of monodisperse colloidal metal particles from microemulsions”. Colloids and Surfaces, 5 (1982) 209-225.
J. W. Shield, H. D. Ferguson, A. S. Bommarlus, and T. A. Hatton, “Enzymes in reversed micelles as catalysts for organic-phase synthesis”. Industrial & Engineering Chemistry Fundamentals, 25 (1986) 603-612.
T. Mori, Y. Kuroda, Y. Yoshikawa, M. Nagao, and S. Kittaka, “A comprehensive study of surface state of MCM-41 having good surface crystallinity and its reactivity to water vapor”. Studies in Surface Science and Catalysis, 132 (2001) 801-804.
T. Hammady, V. Nadeau, and P. Hildgen, “Microemulsion and diafiltration approaches: An attempt to maximize the global yield of DNA-loaded nanospheres”. European Journal of Pharmaceutics and Biopharmaceutics, 62 (2006) 143-154.
M. Duan, Z. Yue, and H. Ma, “Structure of insulin-encapsulated polyalkylcyanoacrylate nanoparticle”. Chinese Pharmaceutical Journal, 34 (1999) 23-26.
D. C. Scott, and G. Hollenbeck, “Design and manufacture of a zero- order sustained-release pellet dosage from through nonuiform drug distribution in a diffusional matix”. Pharmaceutical Research, 8 (1991) 156-161.
H. A. Merchant, H. M. Shoaib, J. Tazeen, and R. I. Yousuf, “Once-Daily Tablet Formulation and In Vitro Release Evaluation of Cefpodoxime Using Hydroxypropyl Methylcellulose: A Technical Note”. The American Association of Pharmaceutical Scientists, 7 (2006) E1-E6.
M. Donbrow, and Y. Samuelov, “Zero order drug delivery from double- layered porous films: release rate profiles from ethyl cellulose, hydroxpropyl cellulose and polyethylene glycol mixtures”. Journal of Pharmacy and Pharmacology, 32 (1980) 463-470.
T. Higuchi, “Mechanism of sustained-action medication: theoretical analysis of rate of release of solid drug dispersed in solid matrices”. Journal of pharmaceutics Scientists, 52 (1963) 1145-1149.
張艾民, “乳化內相凝膠法製備海藻膠微膠囊包覆維生素E及其釋放性研究”, 靜宜大學碩士論文, (2002).
S. A. Wissing, and R. H. Müller, “Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration”. Journal of Controlled Release, 81 (2002) 225-233.
B. W. Barry, “Novel mechanisms and devices to enable successful transdermal drug delivery”. European Journal of Pharmaceutical Sciences, 14 (2001) 101-114.
J. E. Rwiere, and M. G. Papich, “Potential and problems of developing transpatches for veterinary applications”. Advanced Drug Delivery Reviews, 50 (2001) 175-203.
B. W. Barry, “Mode of action of penetration enhancers in human skin”. Journal of Control Release, 6 (1987) 85-97.
A. Kogan, and N. Garti, “Microemulsions as transdermal drug delivery vehicles”. Advances in Colloid and Interface Science, 123 (2006) 369-385.
P. C. Mills, and S. E. Cross, “Transdermal drug delivery: Basic principles for the veterinarian”. Veterinary Journal, 172 (2006) 218-233.
M. R. Prausnitz, and R. Langer, “Transdermal drug delivery”. Nature Biotechnology, 26 (2008) 1261-1268.
T. P. Sullivan, W. H. Eaglstein, S. C. Davis, and P. Mertz, “The pig as a model for human wound healing”. Wound Repair and Regeneration, 9 (2001) 66-76.
B. M. Magnusson, K. A. Walters, And M. S. Roberts, “Veterinary drug delivery: Potential for skin penetration enhancement”. Advanced Drug Delivery Reviews, 50 (2001) 205-227.
楊雨哲, 彭子安與符永豐, “胰島素與胰島素抗性探討”, 藥學雜誌, 80 (2005) 33-38.
F. Wang, J. M. Carabino, and C. M. Vergara, “Insulin glargine: a systematic review of a long-acting insulin analogue”. Clinical Therapeutics, 25 (2003) 1541-1577.
R. C. Weast, Handbook of chemistry and physics, CRC Press, Inc., Florida, USA., 61st Edition, (1981) 51-61.
F. J. Nieves, and A. F. Barbero, “Electrokinetic behavior of polymer colloids, in K. Esumi (Eds.)”. Polymer interfaces and emulsions, Marcel Dekker, Inc., New York, USA., (1999) 167-217.
T. Tadros, P. Izquierdo, J. Esquena and C. Solans, “Formation and stability of nano-emulsions”. Advances in Colloid and Interface Science, 108 (2004) 303-318.
M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding”. Analytical Biochemistry, 72 (1976) 248-254.
Q. Gana, and T. Wang, “Chitosan nanoparticle as protein delivery carrier -Systematic examination of fabrication conditions for efficient loading and release”. Colloids and Surfaces B: Biointerfaces, 59 (2007) 24-34.
Y. C. Kim, P. J. Ludovice, and M. R. Prausnitz, “Transdermal delivery enhanced by magainin pore-forming peptide”. Journal of Controlled Release, 122 (2007) 375-383.
E. G. Maghraby, “Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: Effects of cosurfactants”. Internation Journal of Pharmaceutics, 355 (2008) 285-292.
F. Shakeel, W. Ramada, and M. Ahmed, “Investigation of true nanoemulsions for transdermal potential of indomethacin: characterization, rheological characteristics, and ex vivo skin permeation studies”. Journal of Drug Targeting, 17 (2009) 435-441.
Y. W. Chien, P. R. Keshary, Y. C. Huang, and P. P. Sarpotdar, “Comparative controlled skin permeation of nitroglycerin marketed transdermal delivery system”. Journal of Pharmaceutical Sciences, 72 (1983) 968-970.
W. Weyenberg, P. Filev, D. Plas, J. Vandervoort, K. Smet, P. Sollie, and A. Ludwig, “Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application”. International Journal of Pharmaceutics, 337 (2007) 291-298.
陳嘉媚, “維他命K1與薑黃素傳遞之奈米乳液”. 長庚大學生化與生醫工程研究所碩士論文, (2008).
L. Peng, B. Wang, and P. Ren, “Reduction of MTT by flavonoids in the absence of cells”. Colloids and Surfaces B: Biointerfaces, 45 (2005) 108-111.
M. Porras, C. Solans, C. Gonzalez, A. Martinez, A. Guinart, and J. M. Gutierrez, “Studies of formation of W/O nano-emulsions, Colloids Surfaces A: Physicochemical and Engineering Aspects, 249 (2004) 115-118.
E. P. Melo, M. R. Aires-Barros, and J. M. S. Cabral, “Reverse micelles and protein biotechnology”. Biotechnology Annual Review, 7 (2001) 87-129.
L. Wang, “Oil-in-water nanoemulsions for pesticide formulations”. Journal of Colloid and Interface Science, 314 (2007) 230-235.
C. M. Pey, A. Maestro, I. Solé, C. González, C. Solans, and J. M. Gutiérrez, “Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study”. Colloids Surfaces A: Physicochemical and Engineering Aspects, 288 (2006) 144-150.
K. Bouchemal, S. Briancon, E. Perrier, and H. Fessi, “Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization”. International Journal of Pharmaceutics, 280 (2004) 241-251.
S. L. Ee, X. Duan, J. Liew, and Q. D. Neuyen, “Droplet size and stability of nanoemulsions produced by the temperature phase inversion method”. Chemical Engineering Journal, 140 (2008) 626-631.
V. Uskokovi, and M. Drofenik, “Synthesis of materials within reverse micelles”. Surface & Letters, 12 (2005) 239-277.
R. P. Bagwe, C. Yang , L . R. Hilliard, and W. Tan, “Optimization of dye-doped silica nanoparticles prepared using a reverse micro-emulsion method”. Langmuir, 20 (2004) 8336-8342.
M. Tata, S. Banerjee, V. T. John, Y. Waguespack, and G. L. McPherson, “Fluorescence quenching of CdS nanocrystallites in AOT water-in-oil microemulsions”. Colloids Surfaces A: Physicochemical and Engineering Aspects, 127 (1997) 39-46.
M. Porras, A. Martinez, C. Solans, C. Gonzalez, and J. M. Gutierrez , “Ceramic particles obtained using W/O nano-emulsions as reaction media”. Colloids Surfaces A: Physicochemical and Engineering Aspects, 270-271 (2005) 189-194.
M. Liu, L. Gan, Y. Pang, Z. Xu, Z. Hao, and L. Chen, “Synthesis of titania-silica aerogel-like microspheres by a water-in-oil emulsion method via ambient pressure drying and their photocatalytic properties”. Colloids Surfaces A: Physicochemical and Engineering Aspects, 317 (2008) 490–495.
J. Aucouturier, L. Dupuis, S. Deville, S. Ascarateil, and V. Ganne, “Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines”. Expert Review of Vaccines, 1 (2002) 111-118.
C. C. Muller-Goymann, “Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration”. European Journal of Pharmaceutics and Biopharmaceutics, 58 (2004) 343-356.
B. Yang, and Z. H. Han, “Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids”. Applied Physics Letters, 88 (2006) Article number 261914.
M. Chiesa, J. Garg, Y. T. Kang, and G. Chen, “Thermal conductivity and viscosity of water-in-oil nanoemulsions”. Colloids Surfaces A: Physicochemical and Engineering Aspects, 326 (2008) 67-72.
G. D. Rees, R. Evans-Gowing, S. J. Hammond, and B. H. Robinson, “Formation and morphology of calcium sulfate nanoparticles and nanowires in water-in-oil microemulsions”. Langmuir, 15 (1999) 1993-2002.
K. Welin-Berger, and B. Bergenstahl, “Inhibition of Ostwald ripening in local anesthetic emulsions by using hydrophobic excipients in the disperse phase”. International Journal of Pharmaceutics, 200 (2000) 249-260.
A. A. Pena, and G. A. Miller, “Kinetics of compositional ripening in emulsions stabilized with nonionic surfactants”. Journal of Colloid and Interface Science, 244 (2001) 154-163.
D. Morales, J. M. Gutierrez, M. J. Garcia-Celma, and C. Solans, “A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation”. Langmuir, 19 (2003) 7196-7200.
M. Fingas, and B. Fieldhouse, “Formation of water-in-oil emulsions and application to oil spill modeling”. Journal of Hazardous Materials, 107 (2004) 37-50.
M. Porras, C. Solans, C. Gonzalez, and J. M. Gutierrez, “Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324 (2008) 181-188.
L. C. Peng, C. H. Liu, C. C. Kwan, and K. F. Huang, “Optimization of water-in-oil nanoemulsions by mixed surfactants”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 370 (2010) 136-142.
H. Sagitani, “Making homogeneous and fine droplet O/W emulsions using nonionic surfactants” Journal of the American oil Chemists' Society, 58 (1981) 738-743.
F. Xie, and B. W. Brooks, “Phase behaviour of a non-ionic surfactant -polymeric solution-water system during the phase inversion process”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252 (2005) 27-32.
S. Sajjadi, “Nanoemulsion formation by phase inversion emulsification: on the nature of inversion”. Langmuir, 22 (2006) 5597-5603.
R. P. Gullapalli, and B. B. Sheth, “Influence of an optimized non-ionic emulsifier blend on properties of oil-in-water emulsions”. European Journal of Pharmaceutics and Biopharmaceutics, 48 (1999) 233-238.
L. Wang, J. Dong, J. Chen, J. Eastoe, and X. Li, “Design and optimization of a new self-nanoemulsifying drug delivery system”. Journal of Colloid and Interface Science, 330 (2009) 443-448.
W. Liu, D. Sun, C. Li, Q. Liu, and J. Xu, “Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method”. Journal of Colloid and Interface Science, 303 (2006) 557-563.
K. Shinoda, and H. Saito, “The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant”. Journal of Colloid and Interface Science, 26 (1968) 70-74.
P. Izquierdo, J. Esquena, T. F. Tadros, C. Dederen, M. J. Garcia, N. Azemar, and C. Solans, “Formation and stability of nano-emulsions prepared using the phase inversion temperature method”. Langmuir, 18 (2002) 26-30.
A. Forgiarini, J. Esquena, C. Gonzalez, and C. Solans, “Formation of nanoemulsions by low-energy emulsification methods at constant temperature”. Langmuir, 17 (2001) 2076-2083.
A. Forgiarini, J. Esquena, C. Gonzalez, and C. Solans, “Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation”. Progress in Colloid and Polymer Science, 115 (2000) 36-39.
P. Izquierdo, J. Feng, J. Esquena, T. F. Tadros, J. C. Dederen, M. J. Garcia, N. Azemar, and C. Solans, “Phase behavior and nanoemulsion formation by the phase inversion temperature method”. Langmuir, 20 (2004) 6594-6598.
P. Izquierdo, J. Feng, J. Esquena, T. F. Tadros, J. C. Dederen, M. J. Garcia, N. Azemar, and C. Solans, “The influence of surfactant mixing ratio on nano-emulsion formation by the pit method”. Journal of Colloid and Interface Science, 285 (2005) 388-394.
H. Kunieda, and K. Shinoda, “Evaluation of the hydrophile-lipophile balance (HLB) of nonionic surfactants. I. Multisurfactant systems”. Journal of Colloid and Interface Science, 107 (1985) 107-121.
H. Kunieda, and N. Ishikawa, “Evaluation of the hydrophile-lipophile balance (HLB) of nonionic surfactants”. II. Commercial-surfactant systems, Journal of Colloid and Interface Science, 107 (1985) 122-128.
C. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia, “Nano- emulsions”. Current Opinion in Colloid & Interface Science, 10 (2005) 102-110.
J. Esquena, G. R. Sankar, and C. Solans, “Highly concentrated W/O emulsions prepared by the PIT method as templates for solid foams”. Langmuir, 19 (2003) 2983-2988.
L. Dai, W. Li, and X. Hou, “Effect of the molecular structure of mixed nonionic surfactants on the temperature of miniemulsion formation”. Colloids Surfaces A: Physicochemical and Engineering Aspects, 125 (1997) 27-32.
N. Anton, P. Gayet, J. P. Benoit, and P. Saulnier, “Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion”. International Journal of Pharmaceutics, 344 (2007) 44-52.
T. Tadros, P. Izquierdo, J. Esquena, and C. Solans, “Formation and stability of nanoemulsions”. Advances in Colloid and Interface Science, 108-109 (2004) 303-318.
N. Uson, M. J. Garcia, and C. Solans, “Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 250 (2004) 415-421.
B. Deminiere, A. Colin, F. L. Calderon, and J. Bibette, in: B.P. Brinks (Ed.), “Modern Aspects of Emulsion Science”. The Royal Society of Chemistry, Cambridge, UK., (1998) 261-282.
P. Taylor, “Ostwald ripening in emulsions”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 99 (1995) 175-185.
I. Capek, “Degradation of kinetically-stable o/w emulsions”. Advances in Colloid and Interface Science, 107 (2004) 125-155.
彭麗靜, 黃克峰, 官常慶與劉繼賢 “幾丁聚寡醣奈米顆粒當作為傳遞蛋白質的載體之包覆效率與體外經皮穿透的探討”. 美容科技學刊, 第十卷第一期 (2013) 10-1-03.
L. C. Peng, C. H. Liu, C. C. Kwan, and K. F. Huang, “Hybrid nanoparticle insulin carriers”. The Journal of Taiwan Pharmacy, 112 (2012) 26-30.
N. Yadav, G .Morris, and S. E. Harding, “Various non-injectable delivery systems for the treatment of diabetes mellitus”. Endocrine, Metabolic & Immune Disorders-Drug Targets, 9 (2009) 1-13.
J. M. Lee, H. H. L. Edwards, C. A. Pereira, and S. I. Samii,“Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)”. Journal of Materials Science:Materials in Medicine, 7 (1996) 531-541.
E. Ruckenstein, “Microemulsions,macroemulsions,and the Bancroft rule ”. Langmuir, 12(1996) 6351-6353.
L. Lachman, H. A. Liberman and L. Kaing, “ The theory and practice of industry pharmacy”. 3rd, ed., Lea & Febiger, philadephia, (1986) 283-285.
R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, “Biodegradable long-circulating polymeric nanospheres”. Science, 263 (1994) 1600-1603.
G.M. Barratt, “Therapeutic applications of colloidal drug carriers.” Pharmaceutical Science & Technology Today, 3 (2000) 163-171.
J. H. Schulman, L. M. Prince , and W. Stoeckenius, “Mechanism of formation and structure of microcmulsions by electron microscopy”. Journal of Pharmaceutics and Chemistry, 63(1959) 1677-1680.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top