(18.204.227.34) 您好!臺灣時間:2021/05/17 05:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡文娟
研究生(外文):Wen-Chuan Tsai
論文名稱:Multi-CONWIP拉式生產系統之模擬研究
論文名稱(外文):A Simulation Study of Multi-CONWIP Pull Production Systems
指導教授:曾文宏曾文宏引用關係
指導教授(外文):Wen-Hong Tseng
學位類別:碩士
校院名稱:南台科技大學
系所名稱:工業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:76
中文關鍵詞:Multi-CONWIP系統看板系統系統模擬
外文關鍵詞:Multi-CONWIP systemkanban systemSystem simulation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討在生產單一產品的環境下,進行不同分段型態之Multi-CONWIP (Multi-CONstant Work-In-Process) 拉式生產系統模擬實驗,並跟看板生產系統和CONWIP生產系統比較其系統績效。主要系統績效衡量的指標為平均在製品數量、週期時間、產出率與服務水準,而設定工作站數目有六、八與十工作站。評估的項目有 (1) 當生產系統的分段型態為等量分段時,評估不同分段數下之系統績效,(2) 若為非等量分段,則評估不同分段數與分段點組合下之系統績效差異,以及(3) 評估看板系統、CONWIP系統與Multi-CONWIP系統之系統績效。
模擬實驗數據顯示看板系統、CONWIP系統與Multi-CONWIP系統隨總看板數的增加,三種系統的平均在製品數量與週期時間隨之增加,而產出率與服務水準相對也隨之提高。Multi-CONWIP系統無論是採用等量分段或是非等量分段,隨著系統分段數的增加,系統累積的變異也隨之增加,使系統的產出率與服務水準隨之下降。在相同分段數下,相較於等量分段Multi-CONWIP系統,非等量分段Multi-CONWIP系統有較高的產出率與服務水準。在相同工作站數與總看板數的條件下,CONWIP系統有最高的產出率與服務水準,而看板系統的產出率與服務水準最低。
This research studies the performances of the kanban, multi-CONWIP, and CONWIP (CONstant Work-In-Process) pull production systems. The performance measures used to evaluate the systems are work in process, cycle time, throughput, and service level. Simulation models of six, eight, and ten-workstation pull production systems are established for experiments. Also sets the isometric segment and non-isometric segment systems of multi-CONWIP system are evaluated.
Simulation results show that work in process, cycle time, throughput, and service level of the system increase as the total number of cards in the system increases. When the number of segments in multi-CONWIP systems increases, throughput and service level decrease for both systems of isometric and non-isometric segments. With the same number of segments in the Multi-CONWIP system, the non-isometric system has a higher throughput and service level than the isometric system. With the same number of cards which is an upper limit on the WIP for all three systems, the CONWIP system has the best performance of throughput and service level while the kanban system performs worst. However, the CONWIP system also has largest WIP and cycle time.
摘要 i
Abstract ii
目次 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究範圍與限制 3
1.4 研究流程與章節架構 4
第二章 文獻探討 6
2.1 看板生產系統 6
2.2 CONWIP生產系統 9
2.3 MULTI-CONWIP生產系統 12
2.4 拉式生產系統之比較 14
2.5 看板與在製品之關係 17
第三章 研究方法與模型建構 22
3.1 系統模擬的基本觀念 22
3.1.1 系統的基本觀念 22
3.1.2 模擬的基本觀念 24
3.1.3 模擬之類型 26
3.2 PROMODEL 4.2模擬軟體 26
3.3 模型建構 28
3.4決定模擬之次數 33
第四章 模擬實驗與數據分析 35
4.1 六工作站之模擬 35
4.1.1 等量分段Multi-CONWIP系統 36
4.1.2 非等量分段Multi-CONWIP系統 37
4.1.3看板系統、CONWIP系統與Multi-CONWIP系統 40
4.2 八工作站之模擬 44
4.2.1 等量分段Multi-CONWIP系統 44
4.2.2 非等量分段Multi-CONWIP系統 46
4.2.3看板系統、CONWIP系統與Multi-CONWIP系統 49
4.3 十工作站之模擬 52
4.3.1 等量分段Multi-CONWIP系統 52
4.3.2 非等量分段Multi-CONWIP系統 54
4.3.3看板系統、CONWIP系統與Multi-CONWIP系統 58
第五章 結論與建議 62
5.1 結論 62
5.2 建議 63
參考文獻 65
1. 王正誼,以價值流圖與多準則決策方法進行需求不確定下之精實拉式系統設計,國立成功大學製造工程研究所碩士論文,2009。
2. 李靜怡,運用Multi-CONWIP模式改善迴流特性之生產系統,國立高雄第一科技大學運籌管理系碩士論文,2011。
3. 陳建丰,MOPSO演算法求解Multi-CONWIP生產控制問題,國立高雄第一科技大學運籌管理系碩士論文,2012。
4. 楊廣宜,以基因演算法結合離散事件模擬求解最佳CONWIP生產架構,國立成功大學製造工程研究所碩士論文,2002。
5. 鄭書豪,CONWIP生產管制架構於IC封裝產業之應用,國立清華大學工業工程研究所碩士論文,1998。
6. Bard, J. F. and Golany, B., “Determining the number of kanbans in a multiproduct, multistage production system,” International Journal of Production Research, Vol. 29, No. 5, pp. 881-895, 1991.
7. Berkley, B. J., “A review of the kanban production control research literature,” Production and Operations Management, Vol. 1, No. 4, pp. 393-411, 1992.
8. Bonvik, A. M., Couch, C. E., and Gershwin, S. B., “A comparison of production-line control mechanisms,” International Journal of Production Research, Vol. 35, No. 3, pp. 789-804, 1997.
9. Chang, T. M. and Yih, Y., “Generic kanban systems for dynamic environments,” International Journal of Production Research, Vol. 32, No. 4, pp. 889-902, 1994.
10. Christelle, D., Yannick, F., Lee, H.S., “Performance evaluation and design of a CONWIP system with inspection,” International Journal of Production Economics, Vol. 64, pp. 219-229, 2000.
11. Deleersnyder, J. L., Hodgson, T. J., Muller, H., and O’Grady, P. J., “Kanban controlled pull systems: An analytic approach,” Management Science, Vol. 35, No. 9, pp. 1079-1091, 1989.
12. Framinan, J. M., Gonzalez, P. L., and Ruiz-Usano, R., “Dynamic card controlling in a Conwip system,” International Journal of Production Economics, Vol. 99, pp. 102-116. 2006.
13. Gaury, E. G. A., Pierreval, H., and Kleijnen, J. P. C., “An evolutionary approach to select a pull system among Kanban, Conwip and Hybrid,” Journal of Intelligent Manufacturing, Vol. 11, pp. 157-167, 2000.
14. Geraghty, J. and Heavey, C., “A comparison of Hybrid Push/Pull and CONWIP/Pull production inventory control policies,” International Journal of Production Economics, Vol. 91, pp. 75-90, 2004.
15. Graham, I., “Comparing trigger and kanban control of flow-line manufacture,” International Journal of Production Research, Vol. 30, No. 10, pp. 2351-2362, 1992.
16. Gstettner, S. and Kuhn, H., “Analysis of production control systems Kanban and CONWIP,” International Journal of Production Research, Vol. 34, No. 11, pp. 3253-3273, 1996.
17. Hall, W. R., “Driving the Productivity Machine: Production Planning and Control in Japan,” American Production and Inventory Control Society, 1981.
18. Harrell, R. C., Ghosh, B., and Bowden, G., “Simulation Using ProModel,” 2nd edition, McGraw-Hill, 2003.
19. Hodgson, T. J. and Wang, D., “Optimal hybrid push/ pull control strategies for a parallel multistage system: Part I,” International Journal of Production Research, Vol. 29, No.7, pp. 1279-1287, 1991a.
20. Hodgson, T. J. and Wang, D., “Optimal hybrid push/ pull control strategies for a parallel multistage system: Part II,” International Journal of Production Research, Vol. 29, No.7, pp. 1453-1460, 1991b.
21. Hopp, W. J. and Roof, M. L., “Setting WIP levels with Statistical Throughput Control (STC) in CONWIP production lines,” International Journal of Production Research, Vol. 36, No. 4, pp. 867-882, 1998.
22. Hopp, W. J. and Spearman, M. L., “Factory Physics : Foundations of Manufacturing Management,” IRWIN, 1996.
23. Hopp, W. J. and Spearman, M. L., “Factory Physics.” 2nd edition, McGraw-Hill, 2001.
24. Hopp, W. J., Spearman, M. L., and Wooduruff, D. L., “Practical strategies for lead time reduction,” Manufacturing Review, Vol. 3, No. 2, pp. 78–84, 1990.
25. Ioannidis, S. and Kouikoglou V. S., “Revenue management in single-stage CONWIP production systems,” International Journal of Production Research, Vol. 46, No. 22, pp. 6513–6532, 2008.
26. Jodlbauer, H. and Huber A., “Service-level performance of MRP, Kanban, CONWIP and DBR due to parameter stability and environmental robustness,” International Journal of Production Research, Vol. 46, pp. 2179-2195, 2008.
27. Kimura, O. and Terada, H., “Design and analysis of pull system, a method of multi-stage production control,” International Journal of Production Research, Vol. 19, pp. 241-253, 1981.
28. Lavoie P., Gharbi A., and Kenne, J. P., “A comparative study of pull control mechanisms for unreliable homogenous transfer lines,” International Journal of Production Economics, Vol. 124, pp. 241–251, 2010.
29. Li, A. and Co, H. C., “A dynamic programming model for the kanban assignment problem in a multistage multiperiod production system,” International Journal of Production Research, Vol. 29, No. 1, pp. 1-16, 1991.
30. Li, N., Yao, S., Liu, G., and Zhuang, C., “Optimization of a multi-Constant Work-in-Process semiconductor assembly and test factory based on performance evaluation,” Computers & Industrial Engineering, Vol. 59, pp. 314-322, 2010.
31. Mascolo, M. Di., Frein, Y., Dallery, Y., “An analytical method for performance evaluation of KANBAN controlled production systems,” Operations Research, Vol. 44, No. 1, pp. 50-64, 1996.
32. Monden, Y., “Toyota Production System : Practical Approach to Production Management,” Industrial Engineering and Management Press, Norcross, GA, 1983.
33. Muckstadt, J. A. and Tayur, S. R., “A comparison of alternative kanban control mechanisms. II. Experimental results,” IIE Transactions, Vol. 27(1), pp. 151-161, 1995b.
34. Muckstadt, J. A. and Tayur, S.R., “A comparison of alternative kanban control mechanisms. I. Background and structural results,” IIE Transactions, Vol. 27(1), pp. 140-150, 1995a.
35. Pettersen, J. A. and Segerstedt, A., “Restricted work-in-process: A study of differences between Kanban and CONWIP,” International Journal of Production Economics, Vol. 118, pp. 199–207, 2009.
36. Philipoom, P. R., Rees, L. P., Taylor, B. W., and Huang, P. Y., “An investigation of the factors influencing the number of kanbans required in the implementation of the JIT technique with kanbans,” International Journal of Production Research, Vol. 25, No. 3, pp. 457-472, 1987.
37. Rees, L. P., Philipoom, P. R., Taylor, B. W., III, and Huang, P. Y., “Dynamically adjusting the number of kanbans in a just-in-time production system using estimated values of leadtime,” IIE Transactions, Vol. 19, No. 2, pp. 199-207, 1987.
38. Renna, P., “Dynamic Control Card in a Production System Controlled by Conwip Approach,” Jordan Journal of Mechanical and Industrial Engineering, Vol. 4, pp. 425-432, 2010.
39. Satyam, K. and Krishnamurthy, A., “Performance evaluation of a multi-product system under CONWIP control,” IIE Transactions, Vol. 40, pp. 252-264, 2008.
40. Schonberger, R. J., “World Class Manufacturing: The Lessons of Simplicity Applied,” Free Press, 1986.
41. Spearman, M. L. and Zazanis, M. A., “Push and Pull production systems : Issues and comparisons,” Operations Research, Vol. 40(3), pp. 521-532, 1992.
42. Spearman, M. L., Woodruff, D. L., and Hopp, W. J., “CONWIP : a pull alternative to kanban,” International Journal of Production Research, Vol. 28, No. 5, pp. 879-894, 1990.
43. Williams E. J., Ulgen O. M., and Dewitt C., “An approach and interface for building generic manufacturing Kanban-systems models,” Simulation Conference, Vol.2, pp. 1138-1141, 2002.
44. Womack, J. P. and Jones, D. T., “Lean Thinking: Banish Waste and Create Wealth in Your Corporation,” Simon & Schuster, 1996.
45. Yang, T., Fu, H. P., and Yang, K. Y., “An evolutionary-simulation approach for the optimization of multi-constant work-in-process strategy a case study,” International Journal of Production Economics, Vol.107, pp. 104-114, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 鄭智仁,「探討警察人員執行取締酒後駕車問題」,警光雜誌(桃園),561期,頁31~33。
2. 蘇志強、洪文玲、張新岳,「從正當法律程序論酒後駕駛之取締程序」,中央警察大學警學叢刊(桃園),第 31 卷第 6 期(2001),頁143~172。
3. 蘇志強、洪文玲、張新岳,「從正當法律程序論酒後駕駛之取締程序」,中央警察大學警學叢刊(桃園),第 31 卷第 6 期(2001),頁143~172。
4. 蕭家成,「酒文化與文明飲酒」,中國飲食文化基金會會訊(台北),第5卷第1期(1989),頁18~23。
5. 蕭開平、林文玲,「酒精、藥物測試與交通事故之研討」,刑事科學雜誌(台北),第 67 期(2009),頁33~59。
6. 蕭開平、林文玲,「酒精、藥物測試與交通事故之研討」,刑事科學雜誌(台北),第 67 期(2009),頁33~59。
7. 鄭智仁,「探討警察人員執行取締酒後駕車問題」,警光雜誌(桃園),561期,頁31~33。
8. 鄧煌發,「犯罪分析與犯罪學理論-環境犯罪學理論之應用與評析」,警學叢刊(桃園),第38卷第1期(2007),頁1~2。
9. 蕭家成,「酒文化與文明飲酒」,中國飲食文化基金會會訊(台北),第5卷第1期(1989),頁18~23。
10. 鄧煌發,「犯罪分析與犯罪學理論-環境犯罪學理論之應用與評析」,警學叢刊(桃園),第38卷第1期(2007),頁1~2。
11. 蔡聖偉,「從刑總法理檢視分則的立法」,月旦法學雜誌(台北),第 157 期(2008),頁267~293。
12. 蔡聖偉,「從刑總法理檢視分則的立法」,月旦法學雜誌(台北),第 157 期(2008),頁267~293。
13. 蔡明志,「風險管理在大眾運輸安全管理制度議題之發展應用」,運輸計劃季刊(台北),第29卷第1期(2000),頁181~212。
14. 蔡明志,「風險管理在大眾運輸安全管理制度議題之發展應用」,運輸計劃季刊(台北),第29卷第1期(2000),頁181~212。
15. 黃常仁,「困頓新法-論刑法第185條之3」,軍法專刊(台北),第46卷第4期(2000),頁1。