(3.236.222.124) 您好!臺灣時間:2021/05/19 10:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:徐仕易
研究生(外文):Hsu, Shih-Yi
論文名稱:醇還原法製備鎂鎳合金
論文名稱(外文):Preparation of Mg-Ni Alloys by Alcohol reduction
指導教授:蘇順發蘇順發引用關係
指導教授(外文):SU,Shun-Fua
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:102
畢業學年度:101
語文別:中文
論文頁數:66
中文關鍵詞:鎂鎳合金醇還原法
外文關鍵詞:magnesium-nickel alloys signals
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以醇還原法製備鎂鎳合金;乙二醇當還原劑,還原醋酸鎂、醋酸鎳,
氯化鈀為成核劑,限制合金初期粒子粒徑,聚乙烯吡咯烷酮 (PVP)當分散劑,避
免在煅燒前就形成凝團,造成粉體在煅燒後尺寸過大。
改變不同的添加比例,鎂鎳添加莫耳比分冸為 1:1、4:1、10:1,目的是
希望不同的成分比中找出以醇還原法製作最大儲氫量合金,找出針對醇還原法,
所製備的金屬粉末純度不一的方法。
由實驗結果發現,冺用不同前驅物添加比例,配合煅燒氣體(氫氣、氮氣、空
氣)經由 XRD 分析得到,在三種不同氣體煅燒後,只有氫氣煅燒都有產生合金訊
號,三組前驅物添加比例,只有鎂鎳前驅物添加莫耳比 4:1 在不同的鍛燒氣體,產
生合金的訊號;但是在空氣環境中鍛燒,也出現金屬氧化物(MgO)訊號,所以選擇
氫氣為鍛燒氣體比較適合。冺用 Jade6.5 資料庫系統,將在氫氣環境中鍛燒的三組
不同的鎂鎳前驅物添加比例訊號最強的主峰,晶粒的間距(centroid-A),分冸為
2.89(1-1-(a))、2.1056(4-1-(a))、2.1172(10-1-(a));晶粒尺寸(D) 分冸為 10.539(1-1-(a))、
8.4085(4-1-(a))、9.3826(10-1-(a));半峰寬(Peak FWHM)分冸為 0.802(1-1-(a))、
1.004(4-1-(a))、0.899(10-1-(a))晶粒間隙所代表晶粒與晶粒的緻密性,當晶粒緊密會
增加氫進入晶格困難度,晶粒的尺寸代表在一定的空間內可填入多少的晶粒,而
晶粒尺寸越小,所代表可填入晶粒越多,會直接影響吸氫的能力。冺用半峰寬與
結晶率成正比的關係得到半峰寬數值越大,得到結晶率越強,樣品的純度越高,
吸氫量也會跟著增加。由以上三組數據可得到鎂鎳前驅物添加比例在 4:1 的時候經
由氫氣煅燒後的合金材料為本研究的最大儲氫量合金。
This study is an alcohol reduction synthesis of magnesium-nickel alloy; With ethylene
glycol as reductant, Restore the magnesium acetate, nickel acetate, palladium chloride
as nucleating agent, the initial particle size restricted alloy, and then polyvinyl
pyrrolidone (PVP) as a dispersant, to avoid the formation of condensate in the group
before sintering, resulting in a calcining powder after the size is too large.
Change to a different adding proportion magnesium molar ratio of nickel were added
1:1,4:1,10:1, purpose is to to find the different ingredients than the alcohol reduction
method to making the maximum amount of hydrogen storage alloys, find out for
alcohol reduction method, the purity of the metal powder prepared by different
methods.
The experimental results showed that using different precursors adding proportion, with
the calcination gases (hydrogen, nitrogen, air) by XRD analysis obtained after
calcination at three different gases, only hydrogen alloys signals; calcination signals are
generated, three groups of precursor adding proportion, only add a magnesium-nickel
precursor molar ratio of 4:1 at different calcination gases generated alloys signals;
however calcination in the air environment, there have metal oxide (MgO) signals,
chose hydrogen as compared calcination gas fit. Use Jade6.5 database system,in a
hydrogen atmosphere in the three different sets of the calcined precursor adding
proportion magnesium-nickel. Strongest signal peak, the pitch of crystal grains
(centroid-A), respectively, 2.89 (1-1 - (a)), 2.1056 (4-1 - (a)), 2.1172 (10-1 - (a));Grain
size (D), respectively 10.539 (1-1 - (a)), 8.4085 (4-1 - (a)), 9.3826 (10-1 - (a)); Full
width at half maximum (Peak FWHM) were 0.802 (1-1 - (a)), 1.004 (4-1 - (a)), 0.899
(10-1 - (a)). Gap represents the grain crystal grains density, when the grain tightly
increases,difficulty of hydrogen into the lattice, the grain size of an within a space in a
certain number of grains can be filled, and crystal grains the smaller the size, represent
can be filled with more crystal grains. Furthermore the semi-width proportional to the
rate between the crystalline peak width at half the greater the value, obtained the
stronger the rate of crystallization, The higher the purity of the sample, hydrogen
capacity increases will follow. These three sets of data obtained by the
magnesium-nickel precursor ratio 4:1 when adding hydrogen calcination,
research-based alloy material after the maximum storage capacity alloys.
IV


目次
中文摘要………………………………………………………………………………Ⅰ
英 文 摘 要 … … … … … … … … … … … … … … … … … … … … … … … … Ⅱ
致謝…………………………………………………………………………………Ⅲ
目次…………………………………………………………………………………Ⅳ
表目錄…………………………………………………………………………………V
圖目錄…………………………………………………………………………………Ⅵ
第一章前言…………………………………………………………………………01
1-1 氫能源效益……………………………………………………………………01
1-2 儲氫方式………………………………………………………………………02
1-2-1AB 5 型儲氫合金.......................................................................................05
1-2-2 AB 2 型儲氫合金.......................................................................................05
1-2-3 AB 型儲氫合金.......................................................................................06
1-2-4 A 2 B 型儲氫合金.......................................................................................06
1-3 研究動機………………………………………………………………………08
第二章文獻回顧……………………………………………………………………09
2-1 合金製備方式…………………………………………………………………09
2-1-1 球磨法原理與反應機制.........................................................................09
2-1-2 醇還原法原理與反應機制....................................................................09
2-2 儲氫合金化學和熱力學原理…………………………………………………10
2-3 p-c-T 曲線……..……………………………………….....................................15
第三章實驗…………………………………………………………………………16
3-1 藥品…............…………………………………………………………………16
3-2 儀器設備………………………………………………………………………17
3-2-1 場發式電子顯微鏡..................................................................................17
3-2-2 X 光繞射儀(XRD).............................................................................18
3-3 實驗裝置......................................................................................19
3-4 鎂鎳金屬合金的製備與儲氫性能分析……………………………………21
3-5 二氧化矽包覆鎂鎳金屬合金的製備及儲氫性能分析………………………24
第四章結果與討論…………………………………………………………………26
4-1 FE-SEM 燒結過後表面現象觀察. ……………………………………………26
4-2 EDS 掃描及數據彙整…………………………………..……………….......…25
4-3 XRD 分析............................................................................................................29
4-4 氫氣吸附壓力變化.............................................................................................38 4-5 DSC 熱流變化.....................................................................................................45
4-6 STA 熱流,熱重損失變化...................................................................................52
第五章結論………………………………………………………………………….…54
參考文獻
附錄一.............................................................................................................................57
55

參考文獻
1. I.P. Jain, Pragya Jain, Ankur Jain, Novel hydrogen storage materials: A review of
lightweight complex hydrides, Journal of Alloys and Compounds, 503, 303–339,
2010.
2. 曲新生、陳發林,氫能技術,五南圖書出版公司,民 95 年。
3. Dogan B., Hydrogen storage tank systems and materials selection for transport
applications, ASME, 6, 571-578, 2006.
4. Weast RC, Astle MJ, Beyer WH. CRC, handbook of chemistry and physics. 64,
Boca Raton, FL: CRC Press, 1983.
5. Trudeau ML, Advanced materials for energy storage, MRS Bull, 24,23–29, 1999.
6. Schulz R, Huot J, Liang G, Boily S, Lalande G, Denis MC, J.P. Dodel, Recent
development in the applications of nanocrystalline materials to hydrogen
technologies, Materials Science and Engineering: A, 267, 240-245,1999.
7. Darkrim FL, Malbrunot P, Tartaglia GP, Review of hydrogen storage by adsorption
in carbon nanotubes, International Journal ofHydrogen Energy , 27, 193–202, 2002.
8. Hirscher M, Becher M, Haluska M, Zeppelin F, Chen X, DettlaffWeglikowska U,
Are carbon nanostructures an efficient hydrogen storage medium?, Journal of Alloys
Compds, 356, 433–440, 2003.;Hirscher M, Becher M, Hydrogen storage in carbon
nanotubes, Journal of Nanosci Nanotech, 3, 3–17, 2003.
9. 周明弘,儲氫材料 Mg 2 Ni 生長動力學之研究,國立中央大學碩士班論文,民
96 年。
10. 劉芥瑄,多元醇法製備鎂鎳合金及其儲放氫與電化學性質之研究,逢甲大學碩
士班論文,民 96 年。
11. 羅英志,鎂鎳合金與二氧化矽中空球之儲放氫,逢甲大學碩士班論文,民 96
年。
12. 賈志華、鄭晶、馬光,鎂鎳合金燃燒合成影響因素研究,鈦工業進展,第 23
卷,第 6 期,民 95 年。
13. A.A., Nayeb-Hashemi, J.B. Clark, The Mg-Ni(Magnesium-Nickel) System, Bull.
Alloy Phase Diagram, 6, 238-244, 1985.
14. 胡子龍,新材料與應用科技叢書-儲氫材料,曉園出版社,民 92 年。
15. 王俊凱,機械合金法合成鎂鎳基儲氫合金粉末之結構與特性研究,逢甲大學化
學工程學系,民 93 年。
16. M.S. Hegde, D.Larcher, DuPont, B. Beaudoin, K. Tekaia-Elhsissen, J. M. Tarascon.,
Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders,
Solid State Ionics, 93, 33~50. 1997.
17. S. Ayyappan, R. Srinivasa-Gopolan, G. N. Subbanna and C. N. R. Rao,
Nanoparticles of Ag, Au, Pd and Cu produced by alcohol reduction of the salts,
Journal of Materials Research, 12, 398–401, 1997.
18. G. Liang, J. Huot, S. Boily, A. Van Neste and R. Schulz, Hydrogen storage
properties of nanocrystalline Mg 1.9 Ti 0.1 Ni made by mechanical alloying , Journalof
Alloys and Compounds, 282-286, 1999.
19. 徐光憲,稀土.下冊.儲氫材料,冶金工業社,民 84。
20. 大角泰章、吳永寬、苗艷秓,化學工業出版社,民 79 年。
21. 捷東 FT-SEM 儀器操作手冊
22. 林麗娟,X 光繞射原理及其應用,工業材料 86 期,民 83 年
23. N.Aydinbeyli, O.N.Celik, H.Gasan, K.Aybar, Effect of the heating rate on
crystallization behavior of mechanicallyalloyed Mg 50 Ni 50 amorphous alloy, International Journal of Hydrogen Energy,31, 2266–2273, 2006.
24. A. Ranjbar , S. Aminorroaya , Z.P. Guo, Y. Cho, H.K. Liu a,b , A. Dahle,
Comparison of hydrogen storage properties of Mg–Ni from differentpreparation
methods, Materials Chemistry and Physics,127,405–408, 2011.
25. M.H.G. Jacobs, P.J. Spencer, A critical thermodynamic evaluation of the system
MG-NI, Calphad, 22, 513–525, 1998.
26. J. L. Haughton and R. J. Payne, Alloys of Magnesium Research. Part I. The
Constitution of the Magnesium and Nickel,Institute of Metals, 54, 275–283, 1934.
27. F. Islam, M. Medraj, The phase equilibria in the Mg–Ni–Ca system, Computer
Coupling of Phase Diagrams and Thermochemistr,29, 289–302, 2005.
28. Chia-Ming Chen, Jih-MirnJehng, Amination application over nano-Mg–Ni
hydrogen storage alloy catalysts, Applied Catalysis A: General ,267, 103–110, 2004.
29. J.Huot,E.Akiba,T.Takada, Mechanical alloying of Mg-Ni compounds under
hydrogen and inertatmosphere, Journalof Alloys and Compounds, 231,
815-819,1995
30. 陳嘉銘,奈米介金屬鎂-鎳合金於加氫/脫氫反應的應用:PEG 胺化反應及奈米
碳管的成長,國立中興大學碩士班論文,民 93 年。
31. 周健、王河锦,射線衍射峰五基本要素的物理學意義與應用,礦物學報,第 22
卷,第 2 期,民 91 年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top