(35.175.212.130) 您好!臺灣時間:2021/05/18 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:郭沁宏
研究生(外文):Chin-Hong Kuo
論文名稱:單一相Ni0.8Fe0.2-xCuxO-SDC複合陽極材料之製備與特性分析
論文名稱(外文):Preparation and analysis of single phase Ni0.8Fe0.2-xCuxO-SDC composite anode materials
指導教授:吳文昌吳文昌引用關係
指導教授(外文):Wen-Chang Wu
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:101
語文別:中文
論文頁數:99
中文關鍵詞:NiO-SDC複合陽極材料固態氧化物燃料電池
外文關鍵詞:NiO-SDCcomposte anode materialSOFCs
相關次數:
  • 被引用被引用:1
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
在本篇研究中,試圖製備一種新型的Ni0.8Fe0.2-xCuxO-SDC(x=0, 0.05, 0.1, 0.15, 0.175, 0.2)三金屬複合陽極材料並應用於中溫型固態氧化物燃料電池(SOFCs)。本論文分為三部份,第一部分為探討如何製備出單一相陽極材料,第二部分為不同組成對 Ni0.8Fe0.2-xCuxO-SDC(x=0, 0.05, 0.1, 0.15, 0.175, 0.2) 陽極燒結體之影響,第三部份為單電池組的製備並分析其單電池電性效能。
陽極粉體經XRD分析發現,Ni0.8Fe0.2-xCuxO陽極粉體當銅組成大於0.15後即可形成NiO的單一相結構,另外將不同組成比之複合陽極粉體壓碇燒結並進行還原煅燒則發現各組成比皆能形成單一相結構。Ni0.8Fe0.2-xCuxO-SDC陽極型態中當Fe含量較多時其孔隙型態分布較為均勻,不同組成比陽極燒結體孔隙率介於45.1~49.2%之間。將半電池進行阻抗測試時其總阻值隨溫度升高而降低,於不同組成比中Cu含量較低時具有較低的極化阻抗,當操作溫度在800℃時Cu含量為x=0.05與0.1時其陽極阻值分別為1.15與1.79 Ω˙cm2。開環電路測試方面,單電池其開環電壓達到0.78V,穩定性能維持至1200秒,其最大功率密度為3.5 mWcm-2。
In this studied, we would be prepared a novel composite anode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). We also changed the calcination temperature and metal composition ratio in order to prepare single crystalline phase, good porosity, good dispersion and low polarization resistance of composite anode. This studied was divided into three parts. The first part, had been investigated that how to prepare a single phase anode material. The second part, investigated on the influence of different anode composition. The final part, had been investigated preparation and electrical performance of the single cell.
From X-ray diffraction (XRD) analysis, the Ni0.8Fe0.2-xCuxO(x= 0.15, 0.175, 0.2) anode powder exhibited single phase structure. And composite anode exhibited a single crystalline phase as reduction at 600℃ in H2 for 2h. Field-emission scanning electron microscope (FE-SEM) imaged showed that the porous microstructures were uniform distribution with increasing the amount of Fe. Porosity of different composition anodes were from 45.1% to 49.2%. The AC-Impedance (EIS) analysis showed that the resistance values were decreased with increasing the operation temperature and decreasing the amount of Cu. The resistance values were 1.15 and 1.79 Ω × cm2 for the x= 0.15 and x= 0.1, respectively. From OCV analysis, the open-circuit voltage was 0.78V and stabled to 1200 second. It confirmed that the single cell was a potential material. I-V curve test showed that the power density was 3.5 mW/cm2.
Abstract i
摘要 i
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
一、序論 1
1.1燃料電池的起源 1
1.2 SOFC之應用及優缺點 6
1.3 SOFC陽極材料之選擇 7
1.3.1 Ni-YSZ金屬陶瓷陽極 7
1.3.2 Ni-SDC金屬陶瓷陽極 8
1.4 SOFC陽極材料之製備 9
1.5 SOFC陰極材料之選擇與製備 10
1.6 SOFC電解質材料之選擇 11
1.7 SOFC電解質材料之製備 15
1.8 文獻回顧 16
1.9 研究動機 19
二、原理 20
2.1 SOFC之基本原理 20
2.2 SOFC電解質的基本傳導原理 22
2.3 甘胺酸法簡介 24
2.4 水熱法簡介 25
2.5 燒結理論 27
三、實驗裝置與步驟 29
3.1 實驗藥品 29
3.2 儀器設備 30
3.3 實驗方法 31
3.3.1 複合陽極材料製備 31
3.3.2 電解質材料製備 31
3.3.3 複合陰極材料製備 32
3.3.4 單電池製備 32
3.4 材料特性分析 36
3.4.1 SEM燒結體形態分析 36
3.4.2 燒結體相對密度與開放孔隙度量測 36
3.4.3 TG/DTA熱重分析 37
3.4.4 X-ray繞射量測 38
3.4.4.1 晶形變化量測 38
3.4.4.2 晶格常數變化量測 39
3.4.5 AC-Impedance交流阻抗電化學特性測試 39
3.4.6 開路電位(OCV)測試 43
3.4.7 極化曲線測試 43
四、結果與討論 44
4.1 單一相陽極材料製備 44
4.1.1 甘胺酸法之優勢 44
4.1.2 不同煅燒溫度對形成單一相粉體之影響 44
4.1.3 不同組成對形成單一相Ni0.8Fe0.2-xCuxO (x=0, 0.05, 0.1, 0.15, 0.175, 0.2)粉體之影響 48
4.1.4 單一相Ni0.8Fe0.2-xCuxO-SDC(x=0, 0.05, 0.1, 0.15, 0.175, 0.2)複合陽極材料製備與分析 53
4.1.4.1 SDC陶瓷粉體合成分析 53
4.1.4.2單一相 Ni0.8Fe0.2-xCuxO-SDC(x=0, 0.05, 0.1, 0.15, 0.175, 0.2)複合陽極燒結體製備 54
4.1.4.3單一相 Ni0.8Fe0.2-xCuxO-SDC(x=0, 0.05, 0.1, 0.15, 0.175, 0.2)複合陽極燒結體X-ray繞射分析 55
4.2 不同組成對 Ni0.8Fe0.2-xCuxO-SDC(x=0, 0.05, 0.1, 0.15, 0.175, 0.2)燒結體微結構與電性之影響 60
4.2.1 不同組成對 Ni0.8Fe0.2-xCuxO-SDC(x=0, 0.05, 0.1, 0.15, 0.175, 0.2) 燒結體型態與孔隙率之影響 60
4.2.2 半電池製備與微結構分析 66
4.2.2.1 Ni0.8Fe0.2-xCuxO-SDC陽極燒結體與SDC電解質收縮率分析 66
4.2.2.2半電池製備 69
4.2.2.3半電池SEM型態分析 71
4.2.3 半電池交流阻抗分析 74
4.2.4 不同金屬組成對陽極阻抗影響 82
4.3 單電池組製備與分析 87
4.3.1 陰極材料分析 87
4.3.1.1 SSC(Sm0.5Sr0.5CoO3)粉體熱重分析 87
4.3.1.2 SSC(Sm0.5Sr0.5CoO3)粉體X-ray分析 88
4.3.1.3 SSC(Sm0.5Sr0.5CoO3)型態分析 88
4.3.2 單電池結構分析 90
4.3.3 單電池電性測試分析 91
五、結論 94
六、參考文獻 96
1. 衣寶廉、黃朝榮,燃料電池-原理與應用,文化大學材料科學與奈米技術研究所教授編著。
2. H. Tributsch, Challenges for(photo)“electrocatalysis research.” Catalysis Today 1997, 39,(3) 177-186.
3. 黃鎮江,“燃料電池”,全華科技圖書股份有限公司,民92年。
4. 溫武義編譯,“燃料電池技術”,全華科技圖書股份有限公司,民93年。
5. 黃炳照、鄭銘堯,”固態氧化物燃料電池之進展”,化工技術,第111期,民91,pp.135。
6. 王曉紅、黃宏編譯,”燃料電池基礎”, 全華圖書股份有限公司, 民97。
7. N.Q. Minh, T. Takahashi, “Science and technology of ceramic fuel cells.” Elsevier, 1995.
8. D.W. Dees, T.D. Claar, T.E. Easler, et al. “Conductivity of porous Ni/ZrO2-Y2O3 cermets.” J. Electrochem. Soc., 1987, 134(9): 2141-2146.
9. S. Ohara, R. Maric, X. Zhang, et al. “High performance electrodes for reduced temperature solid oxide fuel cell with lanthanum gallate electrode, I. Ni-SDC cermet anode.”, J. Power Source, 2000, 86: 455-458.
10. X, G. Zhang, S. Ohara, R. Maric, et al. “Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte.” J. Power Source, 1999, 83(1-2):170-177.
11. 劉品均, 施佑蓉譯, “材料科學與工程” , 高立圖書有限公司, 民94年.
12. J. Molenda, K. ´Swierczek, W. Zajac, “Functional materials for the IT-SOFC”, Journal of Power Sources 173 (2007) 657–670.
13. M. Mogensen, D. Lybye, N. Bonanos, P.V. Hendriksen, F.W. Poulsen “Factors controlling the oxide ion conductivity of fluorite and perovskite tructured oxides” ,Solid State Ionics 174 (2004) 279–286.
14. B. C. H. Steele, “in High Conductivity Solid Ionic Conductor”, ed. T. Takahashi (World scientific, Singapore, 1989).
15. X. Zhang, J. Gazzarri, M. Robertson, C.Decès-Petit, O. Kesler ,“Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte ” , Journal of Power Sources 185 (2008) 1049–1055.
16. Z.Bi, M. Cheng, Y. Dong, H. Wu, Y. She, B. Yi, “Electrochemical evaluation of La0.6Sr0.4CoO3–La0.45Ce0.55O2 composite athodes for anode-supported La0.45Ce0.55O2–La0.9Sr0.1Ga0.8Mg0.2O2.85bilayer electrolyte solid oxide fuel cells”, Solid State Ionics 176 (2005) 655–661.
17. D. Yang , X. Zhang , S. Nikumb , C. Dec`es-Petit b, R. Hui , R. Maric , D. Ghosh,“Low temperature solid oxide fuel cells with pulsed laser deposited bi-layer electrolyte”, Journal of Power Sources 164 (2007) 182–188.
18. S. Kim, S.P. Yoonz, S.W. Nam, S.H. Hyun, S.A. Hong, “Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol–gel coating method”, Journal of Power Sources 110 (2002) 222–228.
19. J. Ding, J. Liu∗,W. Guo, “Fabrication and study on Ni1−xFexO-YSZ anodes for intermediate temperature anode-supported solid oxide fuel cells”, Journal of Alloys and Compounds 480 (2009) 286–290.
20. H. Kan, H. Lee, “Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel”, catalysis communications 12 (2010) 36–39.
21. X.C. Lu, J.H. Zhu, “Ni–Fe + SDC composite as anode material for intermediate temperature solid oxide fuel cell”, Journal of Power Sources 165 (2007) 678–684.
22. Z. Xie, C. Xia, M. Zhang, W. Zhu, H. Wang, “Ni1−xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel”, Journal of Power Sources 161 (2006) 1056–1061.
23. C.J. Fu, S.H. Chan, X. M. Ge, Q.L. Liu, G. Pasciak, “A promising Ni-Fe bimetallic anode for intermediate-temperature SOFC based on Gd-doped ceria electrolyte”, international journal of hydrogen energy 36(2011) 13727-13734.
24. X.C. Lu, J.H. Zhu*, Z.H. Bi, “Fe alloying effect on the performance of the Ni anode in hydrogen fuel”, Solid State Ionics 180 (2009) 265–270.
25. X. Zhong, J. Zhu, A.H. Zhang, H2-induced environmental embrittlement in ordered and disordered Ni3Fe: An electronic structure approach”, Intermetallics 15 (2007) 495.
26. T. Takasugi, S. Hanada,” The influence of constituent elements and atomic ordering on hydrogen embrittlement of Ni3Fe polycrystals”, Intermetallics 2 (1994) 225.
27. X. Wan, Y. Chen, A. Chen, S. Yan,” The influence of atomic order on H2-induced environmental embrittlement of Ni3Fe intermetallics” Intermetallics 13 (2005) 454.
28. A. Yan, M. Phongaksorn, D. Nativel, E. Croiset, “Lanthanum promoted NiO–SDC anode for low temperature solid oxide fuel cells
fueled with methane”, Journal of Power Sources 210 (2012) 374– 380.
29. B. Tu, Y. Dong, B. Liu, M. Cheng,” Highly active lanthanum doped nickel anode for solid oxide fuel cells directly fuelled with methane”, J. Power Sources 165 (2007) 120–124.
30. Y. Liu, Y. Bai, J. Liu, “(Ni0.75Fe0.25–xMgO)/YSZ anode for direct methane solid-oxide fuel cells”, Journal of Power Sources 196 (2011) 9965– 9969.
31. Z. Xie, W. Zhu, B. Zhu, C. Xia, “FexCo0.5−xNi0.5-SDC anodes for low-temperature solid oxide fuel cells”, Electrochimica Acta 51(2006) 3052–3057.
32. Z. Gao, Z. Mao, C. Wang, Z. Liu, “Development of trimetallic Ni-Cu-Zn anode for low temperature solid oxide fuel cells with composite electrolyte”, international journal of hydrogen energy 35(2010) 12897-12904.
33. 趙于權,”製備Ni0.8Fe0.2-xCuxO-SDC為複合陶瓷金屬之陽極應用於中溫型固態氧化物燃料電池”,南台科技大學化工所碩士論文,民99年。
34. 詹清棋,“以低溫水熱法製備奈米級SDC-SOFCs 電解質”,南台科技大學化工所碩士論文,民95年。
35. 汪士傑,“鍶摻雜LaGaO 固態電解質薄膜”,國立東華大學材料科學與工程研究所碩士論文,民94年。
36. H. Hayashi, R. Sagawa, H. Inaba, K. Kawamura, “Molecular dynamics calculations on ceria-based solid electrolytes with different radius dopants”, Solid State Ionics 131 (2000) 281–290.
37. P. J. Gellings, H. J. M. Bouwmeester, “The CRC handbook of solid state electrochemistry, CRC press.”, New York, (1997)199.
38. H. Yahiro, Y. Eguchi, K. Eguchi , H. Arai, “High-temperature C1-gas fuel cells using proton-conducting solid electrolytes”, J. Appl. Electrochem., 18(1988), 527.
39. 陳秦嘉,“以Chitasan螯合製備中低溫型SOFC用NiO-SDC陽極材料”,南台科技大學化工所碩士論文,民96年。
40. 林生岭、严豸明,”甘氨酸燃烧法合成复合氧化物及电化学研究”,電源與技術,民89年,pp.283-287。
41. 王世敏,許祖勛,傅晶,“奈米材料原理與製備”,五南圖書出版股份有限公司,民93。
42. J. Mccolm, N. J. Clark, in: Forming, “Shaping and Working of High-performance Ceramics,” Chapman, Hall, New York (1989).
43. 龔吉合,潘德華,楊希文,傅承祖,施並裕,丁原傑譯,“材料科學導論(機械材料)”,民87年。
44. S. Yang, T. He, Q. He,”Sm0.5Sr0.5CoO3 cathode material from glycine-nitrate process: Formation, characterization, and application in LaGaO3-based solid oxide fuel cells”, Journal of Alloys and Compounds, In Press, Corrected Proof ( 2006).
45. C. Sun, Z. Xie, C. Xia, H. Li, L. “Chen, Investigations of mesoporous CeO2–Ru as a reforming catalyst layer for solid oxide fuel cells”, Electrochemistry Communications, 8(2006) 833–838
46. W. Zhu, C. Xia, J. Fan, R. Peng, G. Meng,” Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells”, Journal of Power Sources, 160(2006)897-902
47. G. X. Zhang, S. Ohara, R. Maric, et al, “Ni-SDC cermet anode for medium-temperature solid oxide fuel cells with lanthanum gallate electrolyte”, J. Power Sources 83(1999) 170-177
48. 許夢舫,”以鈣鈦礦(Perovskite)結構之材料製作固態氧化物燃料電池(SOFC)”,國立清華大學材料科學與工程學系碩士論文
49. M. H. Huang, “Preparation of Mg-doped lanthanum chromite for solid oxide fuel cell application”, Imperial College, London, UK (1991)
50. 吳泰伯、許樹恩,”X光繞射原理與材料結構分析”,國科會精密儀器中心,民82,pp.103-374
51. X. Guan , H. Zhou , Z. Liu , Y. Wang , J. Zhang , “High performance Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells”, Materials Research Bulletin (2007)
52. M. Hirano, T. Miwa, M. Inagaki, “Low-temperature direct synthesis of nanoparticles of fluorite-type ceria-zirconia solid solutions by forced cohydrolysis at 100 degree C”, Journal of Solid State Chemistry, 158(1)112-117
53. H.C. Park, A.V. Virkar, “Bimetallic (Ni–Fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte”, Journal of Power Sources 186 (2009)133–137
54. A. Singh, J. M. Hill, "Carbon tolerance, electrochemical performance and stability of solid oxide fuel cells with Ni/yttria stabilized zirconia anodes impregnated with Sn and operated with methane”, Journal of Power Sources 214 (2012) 185-194.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top