1. 衣寶廉、黃朝榮,燃料電池-原理與應用,文化大學材料科學與奈米技術研究所教授編著。
2. H. Tributsch, Challenges for(photo)“electrocatalysis research.” Catalysis Today 1997, 39,(3) 177-186.
3. 黃鎮江,“燃料電池”,全華科技圖書股份有限公司,民92年。
4. 溫武義編譯,“燃料電池技術”,全華科技圖書股份有限公司,民93年。
5. 黃炳照、鄭銘堯,”固態氧化物燃料電池之進展”,化工技術,第111期,民91,pp.135。6. 王曉紅、黃宏編譯,”燃料電池基礎”, 全華圖書股份有限公司, 民97。
7. N.Q. Minh, T. Takahashi, “Science and technology of ceramic fuel cells.” Elsevier, 1995.
8. D.W. Dees, T.D. Claar, T.E. Easler, et al. “Conductivity of porous Ni/ZrO2-Y2O3 cermets.” J. Electrochem. Soc., 1987, 134(9): 2141-2146.
9. S. Ohara, R. Maric, X. Zhang, et al. “High performance electrodes for reduced temperature solid oxide fuel cell with lanthanum gallate electrode, I. Ni-SDC cermet anode.”, J. Power Source, 2000, 86: 455-458.
10. X, G. Zhang, S. Ohara, R. Maric, et al. “Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte.” J. Power Source, 1999, 83(1-2):170-177.
11. 劉品均, 施佑蓉譯, “材料科學與工程” , 高立圖書有限公司, 民94年.
12. J. Molenda, K. ´Swierczek, W. Zajac, “Functional materials for the IT-SOFC”, Journal of Power Sources 173 (2007) 657–670.
13. M. Mogensen, D. Lybye, N. Bonanos, P.V. Hendriksen, F.W. Poulsen “Factors controlling the oxide ion conductivity of fluorite and perovskite tructured oxides” ,Solid State Ionics 174 (2004) 279–286.
14. B. C. H. Steele, “in High Conductivity Solid Ionic Conductor”, ed. T. Takahashi (World scientific, Singapore, 1989).
15. X. Zhang, J. Gazzarri, M. Robertson, C.Decès-Petit, O. Kesler ,“Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte ” , Journal of Power Sources 185 (2008) 1049–1055.
16. Z.Bi, M. Cheng, Y. Dong, H. Wu, Y. She, B. Yi, “Electrochemical evaluation of La0.6Sr0.4CoO3–La0.45Ce0.55O2 composite athodes for anode-supported La0.45Ce0.55O2–La0.9Sr0.1Ga0.8Mg0.2O2.85bilayer electrolyte solid oxide fuel cells”, Solid State Ionics 176 (2005) 655–661.
17. D. Yang , X. Zhang , S. Nikumb , C. Dec`es-Petit b, R. Hui , R. Maric , D. Ghosh,“Low temperature solid oxide fuel cells with pulsed laser deposited bi-layer electrolyte”, Journal of Power Sources 164 (2007) 182–188.
18. S. Kim, S.P. Yoonz, S.W. Nam, S.H. Hyun, S.A. Hong, “Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol–gel coating method”, Journal of Power Sources 110 (2002) 222–228.
19. J. Ding, J. Liu∗,W. Guo, “Fabrication and study on Ni1−xFexO-YSZ anodes for intermediate temperature anode-supported solid oxide fuel cells”, Journal of Alloys and Compounds 480 (2009) 286–290.
20. H. Kan, H. Lee, “Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel”, catalysis communications 12 (2010) 36–39.
21. X.C. Lu, J.H. Zhu, “Ni–Fe + SDC composite as anode material for intermediate temperature solid oxide fuel cell”, Journal of Power Sources 165 (2007) 678–684.
22. Z. Xie, C. Xia, M. Zhang, W. Zhu, H. Wang, “Ni1−xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel”, Journal of Power Sources 161 (2006) 1056–1061.
23. C.J. Fu, S.H. Chan, X. M. Ge, Q.L. Liu, G. Pasciak, “A promising Ni-Fe bimetallic anode for intermediate-temperature SOFC based on Gd-doped ceria electrolyte”, international journal of hydrogen energy 36(2011) 13727-13734.
24. X.C. Lu, J.H. Zhu*, Z.H. Bi, “Fe alloying effect on the performance of the Ni anode in hydrogen fuel”, Solid State Ionics 180 (2009) 265–270.
25. X. Zhong, J. Zhu, A.H. Zhang, H2-induced environmental embrittlement in ordered and disordered Ni3Fe: An electronic structure approach”, Intermetallics 15 (2007) 495.
26. T. Takasugi, S. Hanada,” The influence of constituent elements and atomic ordering on hydrogen embrittlement of Ni3Fe polycrystals”, Intermetallics 2 (1994) 225.
27. X. Wan, Y. Chen, A. Chen, S. Yan,” The influence of atomic order on H2-induced environmental embrittlement of Ni3Fe intermetallics” Intermetallics 13 (2005) 454.
28. A. Yan, M. Phongaksorn, D. Nativel, E. Croiset, “Lanthanum promoted NiO–SDC anode for low temperature solid oxide fuel cells
fueled with methane”, Journal of Power Sources 210 (2012) 374– 380.
29. B. Tu, Y. Dong, B. Liu, M. Cheng,” Highly active lanthanum doped nickel anode for solid oxide fuel cells directly fuelled with methane”, J. Power Sources 165 (2007) 120–124.
30. Y. Liu, Y. Bai, J. Liu, “(Ni0.75Fe0.25–xMgO)/YSZ anode for direct methane solid-oxide fuel cells”, Journal of Power Sources 196 (2011) 9965– 9969.
31. Z. Xie, W. Zhu, B. Zhu, C. Xia, “FexCo0.5−xNi0.5-SDC anodes for low-temperature solid oxide fuel cells”, Electrochimica Acta 51(2006) 3052–3057.
32. Z. Gao, Z. Mao, C. Wang, Z. Liu, “Development of trimetallic Ni-Cu-Zn anode for low temperature solid oxide fuel cells with composite electrolyte”, international journal of hydrogen energy 35(2010) 12897-12904.
33. 趙于權,”製備Ni0.8Fe0.2-xCuxO-SDC為複合陶瓷金屬之陽極應用於中溫型固態氧化物燃料電池”,南台科技大學化工所碩士論文,民99年。34. 詹清棋,“以低溫水熱法製備奈米級SDC-SOFCs 電解質”,南台科技大學化工所碩士論文,民95年。35. 汪士傑,“鍶摻雜LaGaO 固態電解質薄膜”,國立東華大學材料科學與工程研究所碩士論文,民94年。
36. H. Hayashi, R. Sagawa, H. Inaba, K. Kawamura, “Molecular dynamics calculations on ceria-based solid electrolytes with different radius dopants”, Solid State Ionics 131 (2000) 281–290.
37. P. J. Gellings, H. J. M. Bouwmeester, “The CRC handbook of solid state electrochemistry, CRC press.”, New York, (1997)199.
38. H. Yahiro, Y. Eguchi, K. Eguchi , H. Arai, “High-temperature C1-gas fuel cells using proton-conducting solid electrolytes”, J. Appl. Electrochem., 18(1988), 527.
39. 陳秦嘉,“以Chitasan螯合製備中低溫型SOFC用NiO-SDC陽極材料”,南台科技大學化工所碩士論文,民96年。40. 林生岭、严豸明,”甘氨酸燃烧法合成复合氧化物及电化学研究”,電源與技術,民89年,pp.283-287。
41. 王世敏,許祖勛,傅晶,“奈米材料原理與製備”,五南圖書出版股份有限公司,民93。
42. J. Mccolm, N. J. Clark, in: Forming, “Shaping and Working of High-performance Ceramics,” Chapman, Hall, New York (1989).
43. 龔吉合,潘德華,楊希文,傅承祖,施並裕,丁原傑譯,“材料科學導論(機械材料)”,民87年。
44. S. Yang, T. He, Q. He,”Sm0.5Sr0.5CoO3 cathode material from glycine-nitrate process: Formation, characterization, and application in LaGaO3-based solid oxide fuel cells”, Journal of Alloys and Compounds, In Press, Corrected Proof ( 2006).
45. C. Sun, Z. Xie, C. Xia, H. Li, L. “Chen, Investigations of mesoporous CeO2–Ru as a reforming catalyst layer for solid oxide fuel cells”, Electrochemistry Communications, 8(2006) 833–838
46. W. Zhu, C. Xia, J. Fan, R. Peng, G. Meng,” Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells”, Journal of Power Sources, 160(2006)897-902
47. G. X. Zhang, S. Ohara, R. Maric, et al, “Ni-SDC cermet anode for medium-temperature solid oxide fuel cells with lanthanum gallate electrolyte”, J. Power Sources 83(1999) 170-177
48. 許夢舫,”以鈣鈦礦(Perovskite)結構之材料製作固態氧化物燃料電池(SOFC)”,國立清華大學材料科學與工程學系碩士論文49. M. H. Huang, “Preparation of Mg-doped lanthanum chromite for solid oxide fuel cell application”, Imperial College, London, UK (1991)
50. 吳泰伯、許樹恩,”X光繞射原理與材料結構分析”,國科會精密儀器中心,民82,pp.103-374
51. X. Guan , H. Zhou , Z. Liu , Y. Wang , J. Zhang , “High performance Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells”, Materials Research Bulletin (2007)
52. M. Hirano, T. Miwa, M. Inagaki, “Low-temperature direct synthesis of nanoparticles of fluorite-type ceria-zirconia solid solutions by forced cohydrolysis at 100 degree C”, Journal of Solid State Chemistry, 158(1)112-117
53. H.C. Park, A.V. Virkar, “Bimetallic (Ni–Fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte”, Journal of Power Sources 186 (2009)133–137
54. A. Singh, J. M. Hill, "Carbon tolerance, electrochemical performance and stability of solid oxide fuel cells with Ni/yttria stabilized zirconia anodes impregnated with Sn and operated with methane”, Journal of Power Sources 214 (2012) 185-194.