跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/23 09:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:溫嘉輝
研究生(外文):Chia-Hui Wen
論文名稱:SnO2/TiO2核殼奈米柱DSSCs光電效率特性分析
論文名稱(外文):Photoelectric Efficiency Characteristic of SnO2-TiO2 Core-Shell Nanorod DSSCs
指導教授:鄭錫恩
指導教授(外文):Hsyi-En Cheng
學位類別:碩士
校院名稱:南台科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:102
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:SnO2奈米柱TiO2奈米柱DSSCsEISIMPS與IMVS
外文關鍵詞:SnO2 NanorodsTiO2 NanorodsDSSCsEISIMPS and IMVS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本研究以陽極氧化方式製備出多孔性氧化鋁模板,再以原子層沉積法(ALD)製備出SnO2/TiO2核殼奈米柱,因為其3D結構使用SnO2為核、TiO2為殼的能帶關係,使載子可快速的由SnO2 傳輸出去,降低載子返回電解液中,提升載子傳輸效率。本研究以掃描式電子顯微鏡(FE-SEM)觀察光電極之表面型態與結構、四點量測分析片電阻值、太陽能模擬器量測DSSC之效率、恆電位儀分析元件之內部轉換阻抗、IMPS與IMVS分析載子的傳輸特性。
結果顯示在製程溫度350℃,水注入量0.88與0.53 cc時,ALD SnO2薄膜成長速率分別為0.159與0.035 nm/cycle,注入量0.88 cc比0.53 cc的成長速率高了五倍,可縮短ALD SnO2的製程時間。從SEM圖來看,水注入量0.88cc所沉積SnO2薄膜比起0.53 cc者有較大的晶粒尺寸,符合本實驗的需求。製程溫度350℃,水注入量0.88 cc的ALD SnO2電阻率小,電子移動率大,因此以該參數成長SnO2核層。TiO2殼層製程溫度則根據文獻選擇300與400℃,厚度則選擇20 nm及40 nm。從SEM圖觀察,SnO2/TiO2奈米柱分布均勻且密度高,奈米柱增長至2 μm,柱與柱間因凡德瓦力作用而有群聚現象產生。
光電轉換效率方面,在AM 1.5光照下,2 μm奈米柱光電極DSSC之VOC、ISC、FF與轉換效率分別為0.76 V、1.067 mA/cm2、0.554及0.45 %。奈米柱增長可提高比表面積,有助於增加染料吸附量,提升光電流(ISC)與填充因子(FF)。EIS量測顯示界面電荷轉換阻抗RCT大約為186 Ω-cm2。IMPS與IMVS量測
顯示電子傳遞時間為0.0174秒,電子存活時間為0.95秒。由於SnO2-TiO2核殼結構有助於載子傳輸,因此電子存活時間遠大於電子需要傳遞出去之時間。
In order to increase surface area of photoelectrode, we used anodic alumina as a template and deposited TiO2 and SnO2 by ALD to obtain SnO2/TiO2 core-shell nanorod structure. Because of the difference of energy band edges of SnO2 and TiO2, the carriers could be transmitted quickly and increase the carrier transport efficiency. In this study, the photoelectrode surface morphology, electron transmission characteristics, sheet resistance, and charge-transfer resistance of dye-sensitized solar cells were analyzed by SEM, EIS, four-point probe, and IMPS/IMVS, respectively.
The results show that the growth rate of SnO2 were 0.159 and 0.035 nm/cycle for the films grown at 350℃ with the H2O injection dosage of 0.88 cc and 0.53 cc, respectively. The films grown at 350℃ had low resistivity and high carrier mobility. Therefore, we used H2O injection dosage of 0.88 cc and process temperature of 350℃ as the deposition condition for SnO2 core layer. According to the literature, we chose 300 and 400℃ as the deposition temperatures of TiO2 shell layer and the thicknesses were set at 20 and 40 nm.
The VOC, ISC, FF, and conversion efficiency of DSSC in AM 1.5 irradiation were 0.76 V, 1.067 mA/cm2, 0.554, and 0.45 %, respectively, for the photoelectrode with 2 μm nanorods. Increasing the length of nanorods could enhance surface area and increase the adsorption amount of dyes, which significantly improved the electric current, f
ill factor, and conversion efficiency. A low charge-transfer impedance (RCT) of approximately 186 Ω-cm2 was obtained for the DSSC with 2 μm nanorod photoelectrode. The carrier transportation time τd and carrier lifetime τn were 0.0174 and 0.95 s, respectively. The long carrier lifetime indicates an effectiveness of SnO2-TiO2 core-shell nanorod structure for carrier transportation.
摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章、緒論 1
1.1 前言 1
1.2 研究目的與方法 2
第二章、理論與文獻回顧 4
2.1 二氧化錫(SnO2)結構與性質 4
2.2二氧化鈦(TiO2)的結構與性質 6
2.3 ALD理論基礎 9
2.4陽極氧化鋁(Anodic Aluminum Oxide,AAO) 12
2.5 染料敏化太陽能電池簡介 14
2-6 電化學交流阻抗(EIS)分析 21
2-7 IMPS與IMVS分析 26
第三章、實驗步驟 28
3.1 實驗規劃與流程 28
3.2 基板準備 29
3.3 無阻障層的AAO模板製備 31
3.4 製作SnO2/TiO2奈米管 34
3.5 染料敏化劑浸泡 39
3.6 Pt正電極製作 40
3.7 太陽能試片封裝 41
3.8 DSSC光電量測方法 42
第四章、實驗結果與討論 45
4.1 ALD薄膜成長特性分析 45
4.1.1 SnO2薄膜特性分析 45
4.1.2 TiO2薄膜特性分析 54
4.2 SnO2/ TiO2核殼奈米柱 56
4.3 染敏太陽能電池光電特性分析 59
4.3.1 SnO2/ TiO2奈米柱DSSCs光電轉換效率 59
4.3.2 SnO2/ TiO2奈米柱DSSCs電化學特性分析 62
4.3.3 SnO2/ TiO2奈米柱DSSCs之IMPS與IMVS分析 65
第五章、結論 68
參考文獻 69
[1] 郭禮青 工研材料 太陽光電發展可期 203期 137-142
[2]B,O’Regan, M. Gratzel, ” A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films “, Nature 353(1991)737.
[3]N. G. Park, J. van de Lagmeet, A. J. Frank, J. Phys., “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, Chem. B 104(2000)8989.
[4]M. Y. Song, D. K. Kim, S. M. Jo, D. Y. Kim, “Electrospun TiO2 electrodes for dye-sensitized solar cells”,Nanotechnology 15(2004)1861.
[5]S. Anadan, “Viologen impregnated PVDF with TiO2 nanofiller as a solid polymer electrolyte for dye-sensitized solar cells”, Current Applied Physics. 8(2008)99.
[6]J. Y. Kim, I. J. Chung, J. K. Kim, J. -W. Yu, “Solid-state photovoltaic devices based on perylene acid-sensitized nanostructural SnO2 with P(VdF-co-HFP) gel electrolyte ” , Current Applied Physics. 6(2006)969.
[7]崔孟晉,染料敏化太陽能電池電解質概述,工業材料雜誌257期,(2008)。
[8]M. Leskela, M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures”, Thin Solid Films 409 (2002) 138.
[9]S.Y. Chai, Y.S. Kim, W.I. Lee,“Photocatalytic property of TiO2 loaded with SnO2 nanoparticles”, J. Electroceram. Soc.17, (2006) 323.
[10]Sekhar C. Ray, Malay K. Karanjai, Dhruba DasGupta,“Tin dioxide based transparent semiconducting films deposited by the dip-coating technique”, Surface and Coatings Technology 102 (1998) 73–80,
[11]陳溪山,“二氧化錫薄膜之製備、微結構及功能性之研究”,國立中山大學材料科學研究所博士論文,(2003)。
[12]L. J. Meng and M. P. dos Santos, " The influence of oxygen partial pressure and total pressure (O2 + Ar) on the properties of tin oxide films prepared by dc sputtering", Vacuum , 45(1994)1191.
[13]Z.M. Zai-zebski, and J.P. Maiton, “Physical properties of SnO2 materials. III - Optical properties”, Journal of the Electrochemical Society, 123(1976) 333.
[14]F. Javier Yusta, Michael L. Hitchman and Sarkis H. Shamlian, “CVD preparation and characterization of tin dioxide films forelectrochemical applications”,Journal of Materials Chemistry (1997) (7–8) 1421.
[15]Tachibana, K. Hara, S. Takano, K. Sayama, H. Arakawa, “ Investigations on anodic photocurrent loss processes in dye sensitized solar cell:comparison between SnO2 and TiO2 films”, Chemical Physics Letters 364 (2002) 297.
[16]A. Salehi, M. Gholizade, “ Gas sensing properties of indium-doped SnO2 thin films with variations in indium concentration”,Sensors Actuat B 89 (1–2) (2003) 173.
[17] Powder Diffraction File, Card No.21-1272, “JCPDS-International Centre for Diffraction Data”, Swarthmore(1997)
[18] A. L. Linsebigler ; G. Lu ; J. T. Yates, Jr. “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results” Chem. Rev., 95(1995)735.
[19] Li-jian Meng, M. Andritschky, M. P. dos Santos, “The effect of substrate temperature on properties of d.c. reactive magnetron sputtered titanium oxide films”, Thin Solid Films, 223(1993)242.
[20] Guang-rui Gu, Zhi He, Yan-chun Tao, Ying-ai Li, Jun-jie Li, HongYin ,Wei-qin Li,Yong-nian Zhao,“Conductivity of nanometer TiO2 thin films by magnetron sputtering”, Vacuum 70(2003)17.
[21] K. M. Reddy, S. V. Manorama, A. R. Reddy, “Bandgap Studies on Anatase Titanium Dioxide Nanoparticles”, Materials Chemistry and Physics 78(2002) 239.
[22] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras “Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity” , Langmuir, 20(2004)2900.
[23] A. Sclafani , J. H. Herrmann “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions”, J. Phys. Chem. 100(1996)13655
[24] A. E. Braun, “ALD breaks materials, conformality barriers”, Semiconductor International, 24(2001)52.
[25] T. Suntola, Atomic layer epitaxy, in Handbook of Crystal Growth, Ed. D. T. J. Hurle,“Thin Films and Epitaxy, Part B: Growth Mechanisms and Dynamics”, Elsevier, Amsterdam Vol. 3 (1994)14.
[26] 林群淵, “陽極氧化鋁模板輔助原子層沉積SnO2/TiO2 核殼奈米管之光觸媒特性”, 南台科技大學, 光電工程系碩士論文(2012) P17。
[27] 鄭才裕, “自我組織奈米級氧化鋁模板陽極氧化機制之研究”, 暨南國際大學,電機工程系碩士論文(2004) P61~ P66。
[28] 李常鉉, “以陽極氧化鋁模板在矽基材上輔助成長奈米結構材料國立交通大學” , 國立交通大學材料科學與工程研究所碩士論文(2005) P41。
[29] 李祈興, “奈米孔洞陽極氧化鋁(AAO)基板製作之研究”, 義守大學電子工 (2007) P41。
[30] V. Sammelselg, A. Rosental, A. Tarre, L. Niinisto, K. Heiskanen, K. Ilmonen, L.-S. Johansson, T. Uustare, “TiO2 thin films by atomic layer deposition: A case of uneven growth at low temperature “, Journal of Engineering and Applied Science,34 (1998) P.78-86.
[31] M. Putkonen, “Development of low-temperature deposition processes by atomic layer epitaxy for binary and ternary oxide thin films”, Dissertation for PhD., department of chemical technology, Helsinki University of Technology, Espoo (2002) 4.
[32] A. P. Li ,“ Hexagonal pore arrays with a 50–420 nm interpore distance formed by
self-organization in anodic alumina”, Journal of Applied Physics 84. 11: (1998)6023.
[33] J.A.Treverton,and N.C.Davies,”XPS studies of de and ac anodic films on aluminum formed in surphuric acid, ”Electrochim.Acta 25(1980) 1571.
[34] S. Tajima,”Luminescence breakdown and colouring of anodic oxide film on alumin” ,Electrochim.Acta 22 (1977) 995.
[35] Kshimizu, G. E. Thompson, and G.G. Wood, “Preparation of requlaely structured porous metal menbranes with two different hole diameters at the two sides” Electrochim.Acta 27(1982)245.
[36] K.Shimizu,G.E.Thompson, and G.G. Wood,”Cellular growth of highly ordered
porous anodic films on alumimum” Thin Solid Films 92 (1982)231
[37] Shoso Shingubara, Osamn Okino ,Yasuyuki Sayama, Hiroyuki Sakaue and Takayuki “Ordered Two Dimensional Nanowire Array Formation Using Self-Organized of Anodically Oxidized Aluminum” Jpn, J, Appl. Phys. Vol.36, (1997)7791
[38] G.P. Smestad, M. Gratzel, M. J. Chem.,“Demonstrating Electron Transfer and Nanotechnology: A Natural Dye–Sensitized Nanocrystalline Energy Converter”, J. Chem. Educ. 75 (1998)752.
[39] Park, J. van de Lagemaat, A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells”, J. Phys. Chem. B 104 8989 (2000).
[40] Park, G. Schlichtho1rl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4”, J. Phys. Chem. B 103 3308 (1999).
[41] S. Ito, Takayuki Kitamura, Yuji Wada, Shozo Yanagida, “Facilefabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating”, Sol. Energy Mater. Sol. Cells 76 3 (2003).
[42]S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells”, J. Phys. Chem. B 106 10004 (2002).
[43]劉茂煌,奈米光電電池,工業材料,203期,91-97。
[44]C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M Grätzel, “ Nanocrystalline Titanium Oxide Electrode for Photovoltaic Application”, J.Am. Ceram. Soc. 80 3157 (1997).
[45]G. wolfbauer, A.M. Bond, J. C. Eklund, D. R. Macfarlane.,“A channal flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitizwd solar cells”, Sol. Energy Mater. and sol. Cells 70(2001)85
[46]A. Zaban, J. Zhang, Y. Diamant, O. Melemed, and J. Bisquert, “Internal reference electrode in dye sensitized solar cells for three-electrode electrochemical characterizations”, J. Phys. Chem. B 107 6022 (2003).
[47]A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells 44 99 (1996).
[48]M. Gratzel, “Photoelectrochemical cells.” Nature 414, 338-344, Nov 15, (2001).
[49]康宏銘, “實驗設計法應用於鈷-鎳-銅氧化物電極氧氣生成之電化學行為” ,國立成功大學化學工程研究所碩士論文, 民國86 年,p81-101。
[50]J. G. Webster, Adam Hilger, “Electrical impedance tomography”, Bristol. 1990
[51]Application Note AC-2. Available upon Request from EG&G Prinecton Applied Research, Electrochemical Instruments Division
[52] http://www.ecochemie.nl , Metrohm Autolab.
[53] X. Duan, Y. Huang, and C. M. Lieber "Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires", Nano Letters, 2, 487(2002).
[54] J. B. Allen, R. F. Larry, “Electrochemical Methods”, John W; Iey and Sons, Chap.9, 316, New York, 1980.
[55] J. R. MacDonald, “Impedance Spectroscopy”, John Wiley&Sons, New York,1987.
[56] L. M. Peter, K. G. U. Wijayantha, “Intensity dependence of the electron diffusion length in dye-sensitised nanocrystalline TiO2 photovoltaic cells”, Electro. Commun., 1, 576(1999).
[57] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shwa, I. Uhlendorf, “Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells:  Characterization by Intensity-Modulated Photocurrent Spectroscopy”, J. Phys. Chem. B, 1997, 101, 10281.
[58]G. Schlichthörl, S. Y. Huang, J. Spraque, A. J. Frank, “Nanostructured Materials for Solar Energy Conversion”, J. Phys. Chem. B, 1997, 101, 8141.
[59]Yukihiro Hara, M. Isabel Tejedor-Tejedor, Kyle Lara, David Lubin, Lauren J. Brzozowski, David J. Severseike, Marc A. Anderson, “Importance of adsorption isotherms in defining performance of dye-sensitized solar cells fabricated from photoelectrodes composed of ZnO nanopowders and nanorods”, Electrochimica Acta 56 (2011) 8873– 8879.
[60] A.M. Bakhshayesh, M.R. Mohammadi, D.J. Fray, “Controlling electron transport rate and recombination process of TiO2 dye-sensitized solar cells by design of double-layer films with different arrangement modes”, Electrochimica Acta 78 (2012) 384– 391.
[61] G.O. Kim and K.S. Ryu, “Dynamic Response of Charge Transfer and Recombination at Various Electrodesin Dye-sensitized Solar Cells Investigated Using Intensity Modulated Photocurrentand Photovoltage Spectroscopy”, Dynamic Response of DSSC 33 (2012) 469.
[62] Fan Wu, Wenjin Yue, Qi Cui, Changwen Liu, Zeliang Qiu, Wei Shen, Hui Zhang,Mingtai Wang, “Performance correlated with device layout and illumination areain solar cells based on polymer and aligned ZnO nanorods”, Solar Energy 86 (2012) 1459.
[63] Kai Pan, Youzhen Dong, Chungui Tian, Wei Zhou, Guohui Tian, Baofeng Zhao, Honggang Fu, “TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode fordye-sensitized solar cells”, Electrochimica Acta 54 (2009) 7350.
[64] Ji Sun Im, Sung Kyu Lee, Jumi Yun, Young-Seak Lee, “CNT–Pt counter electrode prepared using a polyol process to achieve highperformance in dye-sensitised solar cells”, Journal of Industrial and Engineering Chemistry 18 (2012) 1023.
[65] Ji Sun Im, Jumi Yun, Sung Kyu Lee, Young-Seak Lee, “Effects of multi-element dopants of TiO2 for high performance i
n dye-sensitizedsolar cells”, Journal of Alloys and Compounds 513 (2012) 573.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊