1.Jerome R. B. (2000), Exploiting Latent Semantic Information in Statistical Language Modeling, Proceedings of the IEEE, Vol. 88, No. 8, pp. 1279-1296.
2.Qiang Y. and Zhang, H.H. (2003), Web-Log Mining for Predictive Web Caching, IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No. 4, pp. 1050-1053.
3.Suleiman H. M. (2005), Character contiguity in N-gram-based word matching: the case for Arabic text searching, Information Processing and Management, Vol. 41, No. 4, pp. 819-827.
4.Rani, B.P. , Vardhan, B.V. , Durga, A.K. , Reddy, L.P. and Babu, A.V. (2008), Analysis of N-gram model on Telugu Document Classifiaction, IEEE Congress on Evolutionary Computation(CEC 2008),pp. 3199-3203.
5.Mike C., Son D., Ai K. and Nigel C. (2009), Classifying disease outbreak reports using n-grams and semantic features, International Journal of Medical Informatics, Vol. 78, No. 12, pp. e47-e58.
6.Makoto S., Naohide Y., Yi-Ching T., Takashi Ishida and Masayuki G. (2010), English And Taiwanese Text Categorization Using N-gram Based on Vector Space Model, ISITA2010, Taichung, Taiwan, October 17-20.
7.Naptali W., Tsuchiya M. and Nakagawa S. (2012), Topic-Dependent-Class-Based n-gram Language Model, IEEE Transactions on Audio, Speech, and Language Processing, Vol. 20, No. 5, pp.1513-1525.
8.Alzahrani S.M., Salim N. and Abraham A. (2012) Understanding Plagiarism Linguistic Patterns, Textual Features, and Detection Methods, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 42, No. 2, pp.133-149.
9.O'Kane P., Sezer S. , McLaughlin K. and Eul Gyu Im (2013), SVM Training Phase Reduction Using Dataset Feature Filtering for Malware Detection, IEEE Transactions on Information Forensics and Security, Vol. 8, No. 3, pp.500-509.
10.Wu HC, Luk RWP, Wong KF, Kwok KL (2008), Interpreting tf–idf term weights as making relevance decisions, ACM Transactions on Information Systems, Vol. 26, No. 3,pp.13:1-13:36.
11.Salton G, Buckley C (1988), Term-weighting approaches in automatic text retrieval, Information Processing & Management, Vol. 24, No. 5, 1988, pp. 513-523.
12.Taeho Jo (2008), Neural Text Categorizer for Exclusive Text Categorization, Journal of Information Processing Systems, Vol. 4, No. 2, pp.77-86.
13.Linden G., Smith B. and York J. (2003), Amazon.com Recommendations Item-to-Item Collaborative Filtering, IEEE Internet Computing, Vol. 7, No. 1,pp.76-80.
14.Rokach L. and Kisilevich S. (2012), Initial Profile Generation in Recommender Systems Using Pairwise Comparison, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 42, No. 6, pp.1854-1859.
15.Keunho Choi and Yongmoo Suh (2013), A new similarity function for selecting neighbors for each target item in collaborative filtering, Knowledge-Based Systems, Vol. 37, pp. 146-153.
16.Edward Rolando Núñez-Valdéz, Juan Manuel Cueva Lovelle, Oscar Sanjuán Martínez, Vicente García-Díaz, Patricia Ordoñez de Pablos and Carlos Enrique Montenegro Marín (2012), Implicit feedback techniques on recommender systems applied to electronic books, Computers in Human Behavior , Vol. 28, No. 4, pp.1186-1193.
17.Zhaojun Yang, Levow G.A. and Meng H. (2012), Predicting User Satisfaction in Spoken Dialog System Evaluation With Collaborative Filtering, IEEE Journal of Selected Topics in Signal Processing, Vol. 6, No. 8, pp.971-981.
18.Inma Garcia, Sergio Pajares, Laura Sebastia and Eva Onaindia (2012), Preference elicitation techniques for group recommender systems, Information Sciences, Vol. 189, No. 15, pp.155-175.
19.Pei-Yu Wang and Hui-Chun Yang (2012), Using collaborative filtering to support college students’ use of online forum for English learning, Computers & Education, Vol. 59, No. 2, pp.628-637.
20.Qi Liu, Enhong Chen , Hui Xiong , Ding C.H.Q. and Jian Chen (2012), Enhancing Collaborative Filtering by User Interest Expansion via Personalized Ranking, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 42, No. 1, pp.218-233.
21.Robin Burke (2002), Hybrid Recommender Systems Survey and Experiments., User Modeling and User-Adapted Interaction, Vol. 12, No. 4, pp.331-370.
22.Adomavicius G. and Tuzhilin A. (2005), Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 6, pp.734-749.
23.Yoshii K., Goto M., Komatani K. , Ogata, T. and Okuno H.G. (2008), An Efficient Hybrid Music Recommender System Using an Incrementally Trainable Probabilistic Generative Model, IEEE Transactions on Audio, Speech, and Language Processing, Vol. 6, No. 2, pp.435-447.
24.Martinez A., Pazos Arias J.J., Vilas A.F., Duque J.G. and Nores M.L. (2009), What's on TV Tonight? An Efficient and Effective Personalized Recommender System of TV Programs, IEEE Transactions on Consumer Electronics, Vol. 55, No. 1, pp.286-294.
25.Subhash K. Shinde and Uday Kulkarni (2012), Hybrid personalized recommender system using centering-bunching based clustering algorithm, Expert Systems with Applications, Vol. 39, No. 1, pp.1381-1387.
26.Jürgen Buder and Christina Schwind (2012), Learning with personalized recommender systems: A psychological view, Computers in Human Behavior, Vol. 28, No. 1, pp.207-216.
27.Walter Carrer-Neto, María Luisa Hernández-Alcaraz, Rafael Valencia-García , and Francisco García-Sánchez (2012), Social knowledge-based recommender system. Application to the movies domain, Expert Systems with Applications, Vol. 39, No. 12, pp.10990-11000.
28.Ahmad A. Kardan and Mahnaz Ebrahimi (2013), A novel approach to hybrid recommendation systems based on association rules mining for content recommendation in asynchronous discussion groups, Information Sciences, Vol. 219, pp.93-110.
29.Adomavicius G. and YoungOk Kwon (2012), Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques, IEEE Transactions on Knowledge and Data Engineering, Vol. 24, No. 5, pp.896-911.
30.Wikipedia,” Stop words”, https://en.wikipedia.org/wiki/Stop_words.
31.陳重光,應用雲端虛擬化技術結合資訊檢索之演算法教學文章推薦,南台科技大學資訊工程系碩士論文,民101年。32.陳立人,利用Latent Dirichlet Allocation之個人化文章推薦,國立中山大學資訊管理學系碩士論文,民101年。33.吳振銘,應用改良式K-means分群法於個人化音樂推薦服務系統之實現,國立高雄應用科大電子工程系碩士論文,民101年。34.賴昆佑,以統計分析探討文件分類程序對期刊論文分類效果之影響,國立中央大學資訊管理研究所碩士論文,民96年。35.蔡忠霖,應用於多源基因體學分類問題之以熵值為基礎的特徵選取法,國立成功大學資訊管理研究所碩士論文,民96年。36.林重佑,學習向量量化式交換策略混合過濾電影推薦架構,國立雲林科技大學資訊管理碩士班碩士論文,民101年。