(3.239.56.184) 您好!臺灣時間:2021/05/13 12:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:曹仁傑
研究生(外文):Ren-Jie,Cao
論文名稱:基於支持向量機之膚質檢測分析與評分系統
論文名稱(外文):A Support Vector Machine Based Skin Condition Inspection and Scoring System
指導教授:陳定宏陳定宏引用關係
指導教授(外文):Ding-Horng,Chen
學位類別:碩士
校院名稱:南台科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:102
畢業學年度:101
語文別:中文
論文頁數:46
中文關鍵詞:影像處理特徵擷取支持向量機膚質檢測
外文關鍵詞:image processingfeature extractionsupport vector machineskin condition inspection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:384
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:0
皮膚外觀影響著個人的自信,也是許多疾病的表徵。本研究以影像處理的方式,取得影像中的皮膚特徵數據,配合專家意見給予受測皮膚評分,並發展膚質檢測與評分演算法,使電腦能自動分類出膚質好壞,達到膚質檢測的目的。
為了取得臉部皮膚影像,我們設計了一個臉部影像擷取裝置,並以正常光與UV光取得臉部影像。之後我們以一序列之影像前處理步驟包含皮膚色彩分類、影像旋轉與校正、影像對位、型態學去雜訊與病徵區域分割來將臉部區域分割出來。用來判斷膚質之臉部病徵區域包含額頭、眼角、鼻頭、臉頰與下巴區域。這些病徵區域將由專家分別就我們所欲檢測與評分之病徵如青春痘、斑點、皺紋、黑眼圈與曬傷等症狀,擷取三種不同大小之區域,分別給定不同分數之專家意見。我們以病徵區域之色彩與紋理特徵值為訓練數據,透過主成分分析(Principal Component Analysis, PCA)降低資料維度,並以支持向量機(Support Vector Machine, SVM)進行訓練。
本研究共擷取正常光與UV光之影像80張,每張影像分割11個臉部之病徵區域。每個病徵區域都由專家依照所欲檢測之病徵,依照病徵之嚴重性給予1分至5分的評分。我們以其中的50張影像為訓練樣本,其餘之影像為測試樣本。實驗結果顯示,五種病徵之測試正確率介於88%至92%,而平均之誤差分數介於1.2至1.9分。本研究發展了一個有效且簡易的膚質檢測與評分系統,可以有效讓受測者了解本身的膚質並提供專家進一步之診斷參考。
The skin condition affects people’s self-confidence, and it is also the symptom for many diseases. In this thesis, we handle the skin inspection problem. The skin data is extracted by a numbers of medical image processing techniques from the skin images in companion with the expertise from professionals. We have also developed a computerized detection and scoring algorithm to achieve the skin inspection goal.
We designed a facial image acquisition device to acquire the skin images with normal light and UV light. A series of image pre-processing steps including skin color classification, image rotation and correlation, image alignment, morphological noise removal and region of interested (ROI) detection, are performed. For skin inspection purpose, three different sizes of ROIs are extracted from the forehead region, the eyes region, the nose region, the cheek region and the chin region. These ROIs are assigned with a score by the professional experts on the basis of the skin conditions for acne, spot, wrinkle, black eye and sunburn symptoms. The features used in this study contain color and texture features. To reduce the high feature dimensions, the principal component analysis (PCA) is used. A support vector machine (SVM) training algorithm is developed to inspect the skin condition.
In this study, there are total 80 images are acquired with normal light and UV light. Each image is divided with 11 region of interested. Professionals assign each ROI with a score from 1 to 5 according to the severity of the skin diseases. For the skin image set, there are 50 images are used for training, and the other images are used for testing. The experimental result shows that the accuracy rates for the five symptoms are between 88% to 92%, and the average score differences are between 1.2 to 1.9. In this thesis, we have developed a cheap and effective skin condition inspection and scoring system to help people understand their own skin condition and provide a valuable reference for further treatment.
摘 要 IV
ABSTRACT V
致 謝 VI
目  次 VII
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 背景與動機 1
1.2 研究目的 3
1.3 論文架構 3
第二章 文獻探討 4
2.1 膚色分割研究 4
2.2 特徵數據擷取 6
2.3 膚質病徵分類研究 7
第三章 系統架構 10
3.1 影像前處理 12
3.1.1 影像旋轉與校正 12
3.1.2 影像對位 13
3.1.3 形態學去雜訊 14
3.1.4 病徵之訓練區塊擷取 15
3.2 區塊特徵擷取 20
3.2.1 色彩空間特徵擷取 21
3.2.2 紋理特徵擷取 22
3.3 皮膚病徵分類 26
3.3.1 主成分分析(Principal Component Analysis, PCA) 26
3.3.2 支持向量機(Support Vector Machine, SVM) 30
3.3.3 膚質評分分析 33
第四章 實驗探討 35
4.1 系統開發與取像環境設置 35
4.2 膚質評分結果比較 37
4.3 最佳訓練區塊大小 39
4.4 最佳訓練特徵數據 41
第五章 結論 43
5.1 研究限制 43
5.1 未來展望 44
參考文獻 45
[1]Y. Takemae, H. Saito and S. Ozawa, “The evaluating system of human skin surface condition by image processing”, IEEE International Conference on Systems, Man, and Cybernetics, pp 218–223, 2000.
[2]吳敏淇,“皮膚美容診療室”,上旗文化,2004年
[3]J. Serup, “Efficacy testing of cosmetic products”, Skin Research and Technology, pp 141–151, 2001.
[4]黃欣慧, “影像處理技術應用於人臉膚質特徵之研究”. 元智大學碩士論文, 2006.
[5]P. Ng and C.-M. Pun, “Skin Color Segmentation by Texture Feature Extraction and K-mean Clustering”, Computational Intelligence, Communication Systems and Networks (CICSyN), 2011 Third International Conference on, pp 213 –218, 2011.
[6]S. D. F. Hilado, E. P. Dadios and R. C. Gustilo, “Face detection using neural networks with skin segmentation”, Cybernetics and Intelligent Systems (CIS), 2011 IEEE 5th International Conference on, pp 261 –265, 2011.
[7]D. Kuiaski, H. V. Neto, G. Borba, and H. Gamba, “A Study of the Effect of Illumination Conditions and Color Spaces on Skin Segmentation,” 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), pp. 245–252, 2009.
[8]Rafael C. Gonzalez, Richard E. Woods,“Digital Image Processing”,Prentice Hall,2002
[9]R. M. Haralick, “Statistical and structural approaches to texture”, Proceedings of the IEEE, pp 786–804, 1979.
[10]J.-Y. Choi, Y.-M. Ro and K. N. Plataniotis, “Color Local Texture Features for Color Face Recognition”, IEEE Transactions on Image Processing, pp 1366–1380, 2012.
[11]S. Prince and S. Malarvizhi, “Analysis of diffuse reflectance spectra of various skin conditions by principal component method”, International Conference on Biomedical and Pharmaceutical Engineering, pp 1–4, 2009.
[12]A. Tofighi and S. A. Monadjemi, “Face Detection and Recognition Using Skin Color and AdaBoost Algorithm Combined with Gabor Features and SVM Classifier”, 2011 International Conference on Multimedia and Signal Processing (CMSP), pp 141–145, 2011.
[13]A. P. Nanthagopal and R. Sukanesh, “Wavelet statistical texture features-based segmentation and classification of brain computed tomography images”, IET Image Processing, pp 25–32, 2013.
[14]M. Sonka, V.Hilavac, R.Boyle, “Image Processing”, Analysis, and Machine Visionm,PWS Publishing, 1998.
[15]T. Igarashi, “The Appearance of Human Skin”. Department of Computer Science Columbia University New York, 2005.
[16]徐秋霞, “美膚與保健(上) ”. 矩陣出版有限公司, 2005.
[17]詹雅閔, “黃褐斑追緝令”. 中國醫訊, 2007.
[18]林姿妙, “以資訊技術建構台灣地區成年女性膚質老化程度之預測模型”. 元智大學碩士論文, 2005.
[19]黃烱育, “基於影像處理技術與調適性網路模糊推論系統之膚質檢測研究”. 南台科技大學碩士論文, 2010.
[20]廖恒毅, “自動化人臉皮膚缺陷檢測與辨識系統”. 雲林科技大學碩士論文, 2011.
[21]J. Latin, D.Carroll and P.E.Green, “Analyzing Multivariate Data”, Duxbruy, 2003.
[22]M. A. Turk and A. P. Pentland, “ Face recognition using eigenfaces, ” Proc 91 IEEE Comput Soc Conf Comput Vision Pattern Recognit, pp 586-591, 1991.
[23]C. Cortes and V. Vapnik, “Support-vector network,” Machine Learning, pp.273-297, 1995.
[24]陳俊瑋, “一個擷取Gabor特徵的SVM人臉辨識方法”. 臺灣科技大學碩士論文, 2006.
[25]林冠中, “漸進式支持向量機於人臉辨識之應用”. 成功大學碩士論文, 2005.
[26]林智仁, “Libsvm”,http://www.csie.ntu.edu.tw/~cjlin/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔