(3.210.184.142) 您好!臺灣時間:2021/05/16 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄧光志
研究生(外文):Deng Guang-Jhih
論文名稱:複合螺旋研拋機制對金屬射出成型不鏽鋼316L表面特性之研究
論文名稱(外文):A Study of Composite Spiral Abrasive Flow Machining Mechanism for Metal Injection Molding on 316L Stainless Steel Surface Characteristics
指導教授:曾信智曾信智引用關係
指導教授(外文):Tzeng Hsinn-Jyh
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:54
中文關鍵詞:複合螺旋研拋機制、田口實驗方法、表面粗糙度、表面形貌、材料去除率、表面研磨
外文關鍵詞:Composite spiral mechanism of polishing, Taguchi method, Surface roughness, Surface morphology, Material removal rate, Surface grinding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:2
本研究以複合螺旋研拋機制,針對金屬射出成型之316L不鏽鋼進行表面研磨拋光實驗,以獲得表面精度及潔淨之品質。首先搭配田口實驗方法,對不同可控制因子進行分析,針對不鏽鋼表面粗糙度,找出最具影響的因子組合。綜合實驗結果配置出最佳的參數組合,分別為碳化矽粒徑300μm、磨料濃度60%、研磨轉速1200rpm與研磨時間120分鐘,並實際進行參數驗證。最後,就最佳化加工參數組合的實驗結果,對其表面形貌、表面粗糙度及材料去除率進行探討,得到最佳表面粗糙度Ra 0.32μm,其平均材料去除率為3mg/min,經由實驗結果顯示,本研究所採用的加工機制確薴有效提高表面光度,以達到表面研磨的效果。
This study was used composite spiral mechanism of polishing on 316L stainless steel surface polishing experiments to got high surface accuracy and cleansing after the metal injection molding. First, using of composite spiral polishing mechanism with Taguchi method, it's can be analyzes different controlled factors of stainless steel surface roughness, and then found out the most influential combinations of factor. Comprehensive all of the experimental results, we can get the best combination of parameters SiC grain size of 300μm, concentrations of abrasive is 60%, grinding speed of 1200rpm, and time of 120 minutes to use this constituencies to verification the experiment. Finally, follow the optimization experimental of results on surface morphology, surface roughness and material removal rate, we got the best surface roughness was 0.32μm Ra, and the average of material removal rate was 3mg/min. Finally, this polishing system could effectively improved the surface finish in order to achieved the effect of surface grinding.
第一章 緒論
1-1前言
1-2文獻回顧
1-3研究動機與目的
1-4論文架構
第二章 製程基本理論
2-1金屬射出成型簡介
2-1-1金屬射出成型優勢
2-2表面加工與處理
2-3表面研磨製程
2-4磨料流動加工法
2-4-1磨料流動加工法的理論基礎
2-5 複合螺旋研拋機制
2-5-1機制原理
第三章 實驗方法與研究內容
3-1引言
3-2實驗規劃
3-2-1試片說明
3-2-2製程參數選擇
3-3田口方法
3-3-1田口方法名詞介紹
3-3-2訊號雜訊比(S/N)
3-3-3實驗設計
3-4應用實驗設計法進行製程優化
3-4-1品質特性的選定
3-4-2表面粗糙度控制因子與水準配置使用L9
3-5量測儀器介紹
3-5-1表面粗糙度儀
3-5-2微量天平
3-5-3光學顯微鏡
3-5-4掃瞄式電子顯微鏡
第四章、結果與討論
4-1研磨實驗結果
4-2材料去除率
4-3表面形貌分析
五 結論與建議
5-1結論
5-2建議
參考文獻
作者簡介
[1]D. M. Allen, A. Lecheheb, “Micro electro discharge machining of
ink jet nozzles:optimum selection of material and machining
parameters”, Journal of Materials Processing Technology, pp. 53-66
(1996).
[2]X. Q. Sun, T. Masuzawa, M. Fjino, “Micro ultrasonic machining and
its applications in MEMS”, Sensors and actuators, pp.159-164
(1996).
[3]G. F. Benedict,” Non-traditional manufacturing processes”, Marcel
Dekker,New York (1987).
[4]Extrude Hone Corp., 產品目錄資料。
[5]J. J. Haan,P.S Steuf, “Abrasive wear due to the slow flow of a
concentrated suspension” (1998).
[6]T. R. Loveless, R.E. Williams, K.P. Rajurkar, “A study of the
effects of abrasive-flow finishing on various machined surfaces”
(1994).
[7]J. J. Haan,P.S Steuf, “Abrasive wear due to the slow flow of a
concentrated suspension” (1998).
[8]張瑞慶譯,非傳統加工,高立圖書有限公司, pp. 61-70 (2000)。
[9]K. Melzner, S. Odenbach, “Investigation of the Weissenberg effect
in ferrofluids undermicrogravity conditions”, Journal of Magnetism
and Magnetic Materials 252, pp.250-252 (2002).
[10]F. C. Tsai, B.H. Yan, C.Y. Kuan, F.Y. Huang, “A Taguchi and
experimental investigation into the optimal processing conditions
for the abrasive jet polishing of SKD61 mold steel”, International
Journal of Machine Tools & Manufacture pp. 932-945 (2008).
[11]F. C. Tsai, B.H. Yan_, C.Y. Kuan, F.Y. Huang, “A Taguchi and
experimental investigation into the optimal processing conditions
for the abrasive jet polishing of SKD61 mold steel”, International
Journal of Machine Tools & Manufacture 48 (2008).
[12]Z. J. Pei , Graham R. Fisher b, J. Liu, “ Grinding of silicon
wafers: A review from historical perspectives”, International
Journal of Machine Tools & Manufacture 48 , pp. 1297-1307 (2008).
[13]G. Wang, Y. Wang, Z. Xua, “Modeling and analysis of the material
removal depthfor stone polishing”, journal of materials processing
technology 209, pp.2453-2463 (2009).
[14]F. Klocke, R. Zunke, “Removal mechanisms in polishing of silicon
based advanced ceramics”, CIRP Annals - Manufacturing Technology
58 pp.491-494 (2009).
[15]M. T. Do, M. Kane, Z. Tang, F. Larrard,“Physical model for the
prediction of pavement polishing”, Wear 267 pp. 81-85 (2009).
[16]H. T .Zhu , C. Z. Huang, J. Wang , Q. L. Li, C. L.
Che, “Experimental study on abrasive water jet polishing for hard–
brittleaterials”, International Journal of Machine Tools &
Manufacture 49 pp. 569-578 (2009).
[17]V. K. Jain, “Magnetic field assisted abrasive based micro-/nano-
finishing”, Journal of Materials Processing Technology 209 (2009)[18]S. S. Siddiqui, M. Hameedullah, “Abrasive flow machining
performance measures on work-piece surfaces having different
vent/passage considerations for media outflow” International
Journal of Computer Communication and Information System ,IJCCIS
(2010).
[19]Z. Zhang, W. Liu, Z. Song, “Effect of abrasive particle
concentration on preliminary chemical mechanical polishing of
glass substrate”, Microelectronic Engineering 87 pp. 2168-2172
(2010).
[20]Y. Wang, Y. Zhao., W. An, Z. Ni, J. Wang, “Modeling effects of
abrasive particle size and concentration on material removal at
molecular scale in chemical mechanical polishing”, Applied Surface
Science 257 pp. 249-253 (2010).
[21]G. Liu, Z. Huang, X. Liu ,D. Jiang, “Removal Behaviors of
Different SiC Ceramics during Polishing”, J. Mater. Sci. Technol,
26(2), pp. 125-130 (2010).
[22]W. C. Chen, B. H. Yan, S. M. Lee, “A Study on the Spiral
Polishing of the Inner Wall of Stainless Bores”, Advanced
Materials Research Vols.126-128, pp.165-175 (2010).
[23]S. M. Stevens, A. R. Loiola, P. Cubillas, L.R.D. da Silva,
O.Terasaki ,M.W. Anderson, “Hierarchical porous materials:
Internal structure revealed by argon ion-beam cross-section
polishing, HRSEM and AFM”, Solid State Sciences 13 pp. 745-749
(2011).
[24]X. L. Jin, L. C. Zhang, “A statistical model for material removal
prediction in polishing”, Wear 274-275, pp.203-211 (2012).
[25]Kubota, S. Fukuyama, Y. Ichimori, M. Touge, “Surface smoothing of
single-crystal diamond (100) substrate by polishing technique”,
Diamond & Related Materials 24 pp.59-62 (2012).
[26]C. H. Ji, N. H. Loh, K. A. Khor, S. B. Tor, “Sintering study of
316L stainless steel metal injection molding parts using Taguchi
method: final density”, Materials Science and Engineering A311 pp.
74-82 (2001).
[27]M. Rei, E. C. Milke, R. M. Gomes, L. Schaeffer, J.P. Souza, “Low-
pressure injection molding processing of a 316-L stainless steel
feedstock”, Materials Letters 52 pp. 360-365 (2002).
[28]M. S. Huang, H.C. Hsu, “Effect of backbone polymer on properties
of 316L stainless steel MIM compact”, Journal of Materials
Processing Technology 209 pp. 5527-5535 (2009).
[29]J. Meng, N. H. Loh, G. Fua,, S. B. Tor, B.Y. Tay, “Replication a
nd characterization of 316L stainless steel micro-mixer by
micropowder injection molding”, Journal of Alloys and Compounds
496 pp. 293-299 (2010).
[30]C. Quinard, J. Song, T. Barriere , J. C. Gelin. “Elaboration of
PIM feedstocks”Powder Technology 208 pp. 383-389 (2011).
[31]L. Liu, N.H. Loh, B. Y. Tay, S. B. Tor, “Microstructure evolution
of 316L stainless steel micro components prepared by micro powder
injection molding”, Powder Technology 206 pp. 246-251 (2011).
[32]B. Mamen, T. Barriere, J. C. Gelin, “Investigations on thermal
debinding process for fine 316L stainless steel feedstocks and
identification of kinetic parameters from coupling experiments and
finite element simulations” Powder Technology 235 pp. 192-202
(2013).
[33]B. Mamen, T. Barriere, J. C. Gelin, “Investigations on thermal
debinding process for fine 316L stainless steel experiments and
finite element simulations”, Powder Technology 235 pp.192-202
(2013).
[34]G. E. P Box , R W. G Hunte, J. S .Hunter,“Statistics for
Experimenters”, John Wiley &sons, pp. 28 (1978).
[35]G. S Peace, “Taguchi Method, A Hand-On Approach”, Addison-Wesley
(1993).
[36]P. J Ross, “Taguchi Techniques for Quality Engineering”, Second
Edition, McGraw-Hill (1996).
[37]“田口品質工程(Quailty Engineering)”,全威圖書有限公司,台北市 (2002)。
[38]李輝煌,“田口方法品質設計的與實務”,高立出版社,台北市 (2005)。
[39]許坤明、吳復強,“非傳統加工(第三版)”,全華圖書有限公司 (2010)。
[40]宋桂珍,"磨料流加工技術的理論分析和實驗研究",太原理工大學博士學位論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top