跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許博淳
研究生(外文):Po-Chun Hsu
論文名稱:銦鎵鋅氧化物結晶特性之研究銦鎵鋅氧化物結晶特性之研究
論文名稱(外文):Investigation of Crystallization Processes of In-Ga-Zn-Oxides
指導教授:林克默林克默引用關係
指導教授(外文):Keh-Moh Lin
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:102
畢業學年度:101
語文別:中文
論文頁數:136
中文關鍵詞:TGADSC氧化鋅氧化銦氧化鎵氧化銦鋅氧化銦鎵鋅
外文關鍵詞:TGADSCZnOIn2O3Ga2O3IZOIGZO
相關次數:
  • 被引用被引用:4
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究以TGA/DSC分析技術探討銦鎵鋅氧化物溼式製程之反應過程,以了解在退火處理中銦鎵鋅前驅物的裂解與結晶反應。接著再以溶膠-凝膠法製備不同比例之氧化銦鋅與氧化銦鎵鋅薄膜,並探討其晶體結構與光學之特性。
在氧化鋅、氧化銦與氧化鎵前驅物之熱分析得知,氧化鋅前驅物之裂解溫度為347.44℃,結晶溫度為381.56℃,氧化銦前驅物之裂解溫度為304.08℃,結晶溫度為336.80℃,氧化鎵前驅物之裂解溫度為378.68℃,結晶溫度為488.24℃,其結束反應過程之溫度分別為450℃、420℃與550℃。而氧化銦鋅前驅物之裂解溫度為346.40℃,結晶溫度為400.09℃,反應於430℃結束,不同比例之結晶溫度反應點約在381.56℃至412.70℃之間。氧化銦鎵鋅前驅物之裂解溫度為378.01℃,結晶溫度為446.44℃,反應於500℃結束。不同比例之實驗結果得知,鋅含量較高會使鍵結反應溫度增高,而去羥與結晶溫度隨著鎵含量增加而逐漸增加,且添加鎵會使反應過程延長。
由薄膜之XRD分析得知,IZO薄膜在銦含量為17%,形成一個新的(ZnO)5In2O3結構。銦含量為17至23%時,新的In2O3(ZnO)17和In2O3(ZnO)19結構形成。當銦含量為28%至41%時,其薄膜呈現非晶態之晶體結構。當銦含量達到44%,從ZnO相的晶體結構轉成氧化銦相。銦含量在47%以上主要為In2O3結構。而IGZO薄膜則皆為非晶態結構。從TEM結果得知In/(In+Zn)=33%與Ga/(In+Ga+Zn)=33%的結構為次奈米級晶粒所組成之非晶態結構。
由光學特性分析得知,IZO與IGZO皆有85%以上的穿透率。在光學能隙部分,IZO薄膜能隙值介於2.6~3.4eV之間,且IZO的能隙隨著銦含量增加而減少,直至銦含量41%以後開始增加。IGZO薄膜之能隙值介於2.7~3.4 eV之間,添加5%鎵使IGZO晶體結構呈非晶狀態,能隙大小也降至2.7eV,之後隨著鎵含量增加而逐漸增加。
This study discusses the chemical reactions of IGZO gel with TGA/DSC analysis techniques to understand their thermal decomposition and crystallization procedures during wet deposition processing. Then the sol-gel processing method is used with different proportions of IZO and IGZO to produce a thin film and to discuss their crystal structures and optical properties.
From the TGA/DSC analysis of ZnO, In2O3, and Ga2O3 we conclude that the thermal decomposition temperature of ZnO is ca. 347.44°C and its crystallization temperature is 381.56°C; The thermal decomposition temperature of In2O3 is 304.08℃, and its temperature of crystallization is 336.80℃; The thermal decomposition temperature of Ga2O3 is 378.68℃, and it’s crystallization temperature is 488.24℃. The final temperatures of the above processes are separately 450℃, 420℃, and 550℃.
As for IZO, its thermal decomposition temperature is 346.40℃, its crystallization temperature is 400.09℃, and its final temperature is 430℃. Materials with different proportions have a crystallization temperature ranging between 381.56℃ and 412.70℃. IGZO’s thermal decomposition temperature is 378.01℃, its crystallization temperature is 446.44℃, and its final temperature is 500℃. In this experiment where the proportions are changed, it is known that materials with higher Zn proportions tend to have higher reaction temperature. Also the higher the proportion of Ga the higher the temperature is when removing hydroxyl and during crystallization and this also prolongs the reaction time.
From XRD analysis of IZO and IGZO films it is known that IZO film with 17 % In, forming a new structure (ZnO)5In2O3. When the proportion of In reaches 17 to 23 %, new structures are formed: In2O3(ZnO)17 and In2O3(ZnO)19. When In proportion rises to 28 to 41 %, the film is amorphous. And when In proportion rises to 44 %, the structure transforms from a ZnO phase to In2O3 phase. When it rises above 47%, it mainly consists of In2O3 structure. And IGZO films in this study are all not crystal structures. From the TEM observation we know the crystal structure in which In/(In+Zn)=33% and Ga/(In+Ga+Zn)=33% is an amorphous structure made of sub-nano crystalline.
From the optical measurement of the films, it is known that both IZO and IGZO have a transmittance above 85%. Concerning optical band gap, IZO film’s band gap is between 2.6 eV and 3.4 eV, and its value decreases with the proportion rate of In, until In reaches 41% then it rises. IGZO’s band gap lies between 2.7 eV and 3.4 eV, and its value increases with the proportion rate of Ga.
摘要 i
Abstract ii
誌謝 iv
目次 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文架構 3
第二章 基礎理論與文獻回顧 4
2.1透明導電薄膜基礎理論 4
2.1.1 透明導電薄膜之光學性質 4
2.1.2 透明導電薄膜之導電機制 6
2.1.3 溶膠-凝膠法的反應機制 8
2.2熱分析基礎理論 9
2.2.1 TGA分析基本原理 9
2.2.2 DSC分析基本原理 11
2.3 文獻回顧 12
2.3.1 氧化物之熱重熱焓分析 12
2.3.2 氧化銦鋅薄膜 15
2.3.3 氧化銦鎵鋅薄膜 15
2.3.4 透明導電膜之橢圓儀量測 17
第三章 實驗方法及特性量測 18
3.1 實驗與流程 18
3.1.1 實驗藥品及材料 18
3.1.2 實驗流程 19
3.2 檢測儀器介紹 21
3.2.1 光譜式橢圓儀 21
3.2.2 同步熱重-差式掃描熱分析儀 24
3.2.3 X光繞射儀 25
3.2.4 場發射掃描式電子顯微鏡 28
3.2.5 分光光譜儀 30
3.2.6 穿透式電子顯微鏡 32
第四章 結果與討論 33
4.1氧化物前驅物同步熱重熱焓分析 33
4.1.1 氧化鋅 33
4.1.2 氧化銦 36
4.1.3 氧化鎵 40
4.1.4 氧化銦鋅 45
4.1.5 氧化銦鎵鋅 52
4.2 銦鋅與銦鎵鋅薄膜特性分析 61
4.2.1 XRD晶體結構分析 61
4.2.2 TEM晶體結構分析 65
4.2.3 EDS薄膜成份分析 72
4.2.4 光學特性分析 75
4.2.5 膜厚分析 77
第五章 結論 89
參考文獻 91
附錄 94
A 氧化鋅持溫之TGA/DSC量測分析結果 94
B 氧化銦持溫之TGA/DSC量測分析結果 97
C 氧化鎵持溫之TGA/DSC量測分析結果 100
D 氧化銦鋅不同比例之TGA/DSC量測分析結果 104
E 氧化銦鎵鋅不同比例之TGA/DSC量測分析結果 115
作者簡介 136
[1]K. Badeker, Annalen der physik 22 (1907) 749.
[2]D. William, J.Callister, “Fundamentals of materials science and engineering : an integrated approach”, 2nd ed. : John Wily & Sons (2005).
[3]I. Hamberg, C. G. Granqvist, “Band-gap widening in heavily Sn-doped In2O3”, Phys Rev B30 (1984) 3240.
[4]陳慧英、黃定加、朱秦億,溶凝膠法在薄膜製備上之應用,化工技術,第七卷十一期(1999)。
[5]J. H. Lee, K. H. Ko, B. O. Park, “Electrical and optical properties of ZnO transparent conducting films by the sol–gel method”, Journal of Crystal Growth 247 (2003) 119.
[6]A. E. Jiménez-González, J. A. S. Urueta, R. Suárez-Parra, “Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by solgel technique”, Journal of Crystal Growth 192 (1998) 433.
[7]S. Bandyopadhyay, G.K. Paul, R. Roy, S.K. Sen, S. Sen, “Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol-gel technique”, Materials Chemistry and Physics 74 (2002) 83.
[8]S. K. Poznyak, A. I. Kulak “Characterization and photoelectrochemical properties of nanocrystalline In2O3 film electrodes”, Electrochimica Acta 45 (2000) 1595-1605.
[9]P. J. Elving, J. D. Winefordner, I. M. Kolthoff (ed.) “Thermal Analysis”, 3nd ed. : John Wily & Sons (1985).
[10]P. J. Haines, G. R. Heal, P. G. Laye, D. M. Price, S. B. Warrington, R. J. Wilson “Principles of Thermal Analysis and Calorimetry”, The Royal Society of Chemistry (2002).
[11]B. S. Ong, C. Li, Y. Li, Y. Wu, R. Loutfy “Stable, Solution-Processed, High-Mobility ZnO Thin-Film Transistors”, J. AM. CHEM. SOC. 129(2007) 2750-2751.
[12]H. C. Cheng, C. F. Chen, C. Y. Tsay, J. P. Leu “High oriented ZnO films by sol–gel and chemical bath deposition combination method”, Journal of Alloys and Compounds 475 (2009) L46-L49.
[13]S.K. Poznyak, A.I. Kulak “Characterization and photoelectrochemical properties of nanocrystalline In2O3 film electrodes”, Electrochimica Acta 45 (2000) 1595-1605.
[14]W.H. Ho, S.K. Yen “Preparation and characterization of indium oxide film by electrochemical deposition”, Thin Solid Films 498 (2006) 80-84.
[15]E. Li, Z. Cheng, J. Xu, Q. Pan, W. Yu, Y. Chu “Indium Oxide with Novel Morphology: Synthesis and Application in C2H5OH Gas Sensing”, Crystal Growth & Design 9 (2009) 2146-2151.
[16]N. Pentyala, R. K. Guduru, E. M. Shnerpunas, P. S. Mohanty “Synthesis of ultrafine single crystals and nanostructured coatings of indium oxide from solution precursor”, Applied Surface Science 257 (2011) 6850-6857.
[17]I. Lee, J. Kwak, S. Haam, S. Y. Lee “Dipeptide-assisted growth of uniform gallium oxohydroxide spindles”, Journal of Crystal Growth 312 (2010) 2107–2112.
[18]K. Girija, S. Thirumalairajan, G.S. Avadhani, D. Mangalaraj, N. Ponpandian, C. Viswanathan “Synthesis, morphology, optical and photocatalytic performance of nanostructuredβ-Ga2O3”, Materials Research Bulletin 48 (2013) 2296–2303.
[19]C. G. Choi, S. J. Seo, B. S. Bae “Solution-Processed Indium-Zinc Oxide Transparent Thin-Film Transistors”, Electrochemical and Solid-State Letters 11(2008) H7-H9.
[20]G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park, H. J. Kimz “Formation Mechanism of Solution-Processed Nanocrystalline InGaZnO Thin Film as Active Channel Layer in Thin-Film Transistor”, Journal of The Electrochemical Society 156(2009)H7-H9.
[21]S. Y. Lee, B. O. Park “Electrical and optical properties of In2O3–ZnO thin films prepared by sol–gel method”, Thin Solid Films 484 (2005) 184 – 187.
[22]C. G. Choi, S. J. Seo, B. S. Bae “Solution-Processed Indium-Zinc Oxide Transparent Thin-Film Transistors”, Electrochemical and Solid-State Letters 11(2008) H7-H9.
[23]C. Y. Koo, K. Song, T. Jun, D. Kim, Y. Jeong, S. H. Kim, J. Ha, J. Moona “Low Temperature Solution-Processed InZnO Thin-Film Transistors”, Journal of The Electrochemical Society 157(2010)J111-J115.
[24]K. H. Kim, G. H. Kim, H. S. Shin, B. D. Ahn, S. Kang, H. J. Kimz “Growth of Transparent nc-InGaO3(ZnO)2 Thin Films with Indium mol Ratios Using Solution Process”, Journal of The Electrochemical Society 155(2008)H848-H851.
[25]K. Inoue, K. Tominaga, T. Tsuduki, M. Mikawa, T. Moriga “The properties of transparent conductive In–Ga–Zn oxide films produced by pulsed laser deposition”, Vacuum 83 (2009) 552–556.
[26]Y. Wang, S. W. Liu, X. W. Sun, J. L. Zhao, G. K. L. Goh, Q. V. Vu, H. Y. Yu “Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors”, J Sol-Gel Sci Technol 55 (2010) 322-327.
[27]S. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee, H. K. Cho “Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors”, Thin Solid Films (2011).
[28]H. Jeon, S. Na, M. R. Moon, D. Jung, H. Kim, H. J. Lee “The Effects of Zn Ratio on the Microstructure Electrical Properties of InGaZnO Films”, Journal of The Electrochemical Society 158(2011)H949-H954.
[29]J. W. Park, P. S. Jeong, S. H. Choi, H. Lee, B. H. Kong, H. K. Cho “Optical and Structural Properties of Ion-implanted InGaZnO Thin Films Studied with Spectroscopic Ellipsometry and Transmission Electron Microscopy”, Japanese Journal of Applied Physics 48 (2009) 111603.
[30]S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, R. Bartolino “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model”, Applied Surface Science 255 (2009) 7203–7211.
[31]G. Yang, J. Sun, J. Zhou “Optical dielectric behaviors of copper zinc alloy thin films”, Journal of Applied Physics 111 (2012) 073103.
[32]J. A. Woollam CO., Inc., “Data analysis for spectroscopic ellipsometry”, Setember(2004).
[33]許術恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會(1996)。
[34]汪建民,材料分析,中國材料科學學會(1998)。
[35]Spectra analysis manual JASCO Corporation, Tokyo Japan (2004).
[36]R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon” J. Phys. E: Sci. Instrum 16 (1983) 1214.
[37]http://www.fei.com/uploadedFiles/DocumentsPrivate/Content/2007_07_TecnaiF2_20_ds.pdf
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top