(3.238.173.209) 您好!臺灣時間:2021/05/16 20:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林宗翰
研究生(外文):Lin tsung-han
論文名稱:三氧化二鋁-水奈米流體應用於長時間噴霧冷卻時之熱傳性能影響
論文名稱(外文):Long time spray cooling heat transfer performance by using Al2O3-water nanofluid
指導教授:張烔堡
指導教授(外文):Chang tong-bou
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:102
畢業學年度:101
語文別:中文
論文頁數:78
中文關鍵詞:奈米流體噴霧式冷卻臨界熱通量接觸角熱傳增強
外文關鍵詞:Spray coolingNanofluidsCritical heat fluxContact angleheat transfer enhancement
相關次數:
  • 被引用被引用:1
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
摘要
由於奈米流體結合噴霧冷卻法能再提升噴霧冷卻法之熱傳效率,近年來使用奈米流體結合噴霧冷卻法之實驗已經被大量的進行探討與研究。因此本實驗以奈米流體結合噴霧冷卻法,對熱表面進行多次實驗,並進行熱傳效率及其表面變化之探討。實驗首先使用二階法製備二種體積分率的三氧化二鋁-水奈米流體(0.001Vol%、0.05Vol%),分別對熱表面(Cu)進行長時間之奈米流體結合噴霧冷卻法之實驗,結果顯示,三氧化二鋁-水奈米流體在體積分率0.001Vol%時,其熱傳效率並不會因實驗次數增加而降低熱傳效率,其表面潤濕性變化不大;而三氧化二鋁-水奈米流體體積分率在0.05Vol%時,因為其沉澱量較多、較快,使得奈米吸附層(Sorption layer)厚度增加,增加熱表面之熱阻,使得熱傳效率不斷下降,即使表面潤濕性有明顯變化,也無法提升熱傳效率。
Abstract
As combination of nanofluid with spray cooling can further enhance heat transfer efficiency, experiments integrating the two have been extensively discussed and investigated in recent years. Therefore, this paper makes a research on heat transfer efficiency and hot surface changes by combining nanofluid with spray cooling and conducting repeated experiments of hot surface. Firstly, it uses second-order method to prepare two kinds of Al2O3-water nanofluids with two different volume fractions (0.001Vol%, 0.05 Vol %), and implements more than three times of nanofluid-and-spray-cooling integrated experiments for hot surface (Cu). Results show: when volume fraction of Al2O3-water nanofluid is 0.001Vol%, heat transfer efficiency doesn’t decrease as the number of times of experiments increases and superficial wettability doesn’t change significantly. Under a volume fraction of 0.05Vol%, large quantity of sediments and rapid speed of sedimentation cause increases in thickness of nano adsorption layer and thermal resistance of hot surface and thus make heat transfer efficiency continuously decline; even an evident change in superficial wettability won’t enhance heat transfer efficiency.
目次
誌謝 I
摘要 II
Abstract III
目次 IV
表目錄 VII
圖目錄 VII
第一章緒論 1
1.1研究動機與目的 1
1.2研究方法 2
1.3論文架構 3
第二章文獻回顧 4
第三章基本原理與理論分析 7
3.1池沸騰熱傳機制 7
3.2噴霧冷卻法熱傳機制 7
3.3臨界熱通量 9
3.4潤濕性的探討 10
第四章奈米流體製備與介紹 13
4.1奈米流體的優點 13
4.2奈米粉末的製備 14
4.3奈米分末的種類 15
4.4奈米流體的製備 16
4.5奈米流體增強熱傳的機制 17
第五章實驗設備與方法 20
5.1噴霧冷卻系統 20
5.1.1主迴路 20
5.1.2測試段 22
5.1.3加熱模組 23
5.1.4量測元件 27
5.1.5預熱系統 27
5.1.6工作流體之輸送系統 27
5.1.7恆溫系統 28
5.1.8資料擷取系統 28
5.2表面形態分析儀器 29
5.2.1場發射槍穿透式電子顯微鏡(FEG-TEM) 29
5.2.2掃描式電子顯微鏡(Scanning Electron Microscope) 29
5.2.3研磨拋光機 29
5.2.4白光干涉儀(White Light Interferometers) 30
5.3奈米流體製備之相關儀器 30
5.3.1微量天秤 30
5.3.2磁石攪拌機 31
5.3.3超音波震盪器 32
5.3.4超音波破碎機 32
5.3.5熱傳導率量測儀 33
5.3.6接觸角量測儀 33
5.4實驗步驟與方法 34
5.4.1實驗進行前系統設備清洗與準備步驟 34
5.4.2實驗樣本檢測與調配 34
5.4.3加熱表面粗糙度製作與量測 36
5.4.4噴霧冷卻實驗步驟 37
5.4.5噴霧沸騰實驗測試表面溫度計算 39
5.4.6不準確性分析 40
第六章實驗結果與分析 43
6.1實驗參數之驗證 43
6.1.1熱傳導率量測結果與分析 40
6.1.2噴霧冷卻實驗結果驗證 40
6.2實驗之結果與分析 46
6.2.1奈米流體於不同體積分率對噴霧冷卻熱傳之影響 40
6.2.2噴擊次數對實驗之影響 40
6.3表面型態與成分分析(SEM&EDS) 49
6.4加熱試片表面接觸角量測 55
第七章結論與建議 59
7.1結論 59
7.2建議 60
參考文獻 61
符號彙整 65
參考文獻
[1]S.U.S. Choi, J.A.Eastman ,“Enhancing thermal conductivity of Fluids with nanoparticles”,American Society of Mechanical Engineers ,FED-Vol. 231/MD-Vol. 66, (1995),pp.99-105.
[2]Eastman , Choi J. , Li S. Lee S. , “Enhanced thermal conductivity through the development of nanofluids” , Materials Research Society Symposium-Proceedings, Vol.457,(1997),pp.3-11,
[3]S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles”, International Journal of Heat Transfer, Vol.121, (1999), pp.280-289.
[4]J.A. Eastman, S.U.S.Choi, S. Li, W. Yu, L.J.Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Applied physics letters. Vol.78 (6) (2001), pp.718-720.
[5]S.M.You, J.H. Kim, K.H.Kim, “Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer”, Applied physics letters. Vol.83 (2003), pp.3374-3376.
[6]Tu, J. P., Dinh, N., Theofanous, T., “An Experimental Study of Nanofluid Boiling Heat Transfer,” in: Proceedings of 6th International Symposium on Heat Transfer, Beijing, China, 2004.
[7]S. P. Jang , S. Choi, "Role of brownian motion in the enhance thermal conductivity of nanofluids", Applied physics letters. Vol.84, pp. 4316-4318, 2004.
[8]D. Wen,Y. Ding, “Experimental investigation into the poolboiling heat transfer of aqueous based γ-alumina nanofluids”, International Journal of Nanoparticle Research, Vol.7 (2005),pp.265-274.
[9]Subhrakanti CHAKRABORTY, Anirban CHAKRABORTY, Sumitesh DAS, Tridibesh MUKHERJEE, Debashish BHATTACHARJEE, Ranjit Kumar RAY” Application of Water Based-TiO2 Nano-fluid for Cooling of HotSteel Plate”, ISIJ International, Vol. 50 (2010), pp. 124–127.
[10]M.R.Pais, L.C. Chow, E.T.Mahefkey, “Surface roughness and its effects on the heat transfer mechanism in spray cooling”, International Journal of Heat Transfer, Vol.114 (1992), pp.211-219.
[11]S.K.Das, N.Putra, W.Roetzel, “Pool boiling characteristicsof nano-fluids”, International Journal of Heat Mass Transfer, Vol.46 (2003), pp.851-862.
[12]I.C. Bang, S.H. Chang, “Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool”, International Journal of Heat Mass Transfer, Vol.48 (2005), pp.2407–2419.
[13]H. Kim, J. Kim, M. H. Kim, “Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids”, International Journal of Heat and Mass Transfer, Vol.49 (2006), pp.5070–5074.
[14]S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, “Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux”, International Journal of Heat Mass Transfer, Vol.50 (2007), pp.4105-4116.
[15]C.T. Nguyen, N. Galanis, G. Polidori, S. Fohanno, C.V. Popa,A.L. Bechec, “An experimental study of a confined and submerged impinging jet heat transfer using Al2O3-water nanofluid”, International Journal of Thermal Sciences, Vol.48 (2009), pp.401-411.
[16]B. Farajollahi, S.Gh. Etemad, M. Hojjat, “Heat transfer of nanofluids in a shell and tube heat exchanger”, International Journal of Heat Mass Transfer, Vol.53 (2010), pp.12-17.
[17]M. Hojjat, S. Gh. Etemad, R. Bagheri, J. Thibault, ” Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube”, International Journal of Heat and Mass Transfer, Vol.50 (2011) ,pp.525-531.
[18]H. Bellerová, A. A. Tseng, M. Pohanka, M. Raudensky, ” Spray cooling by solid jet nozzles using alumina/water nanofluids”, International Journal of Thermal Sciences, Vol.62 (2012) ,pp.127-137.
[19]Tong-Bou Chang, Siou-Ci Syu, Yen-Kai Yang, ” Effects of particle volume fraction on spray heat transfer performance of Al2O3-water nanofluid”, International Journal of Heat and Mass transfer, Accepted, 2011. (SCI, EI). NSC 99 – 2221 – E – 218 – 013
[20]楊硯凱“奈米流體對於噴流沸騰熱傳性能之影響”, ,南台科技大學能源工程所,台南,(2011).
[21]施柏辰“三氧化二鋁-水奈米流體於高熱通量時之噴霧熱傳性能研究”, ,南台科技大學能源工程所,台南,(2012).
[22]J.G.Collier, J.R .Thome ,“Convective Boiling and Condensation”,3rd Ed, OxfordUniversity Press,(1996).
[23]J.D. Bernardin, C.J. Stebbins, I. Mudawar, “Mapping of impact and heat transfer regimes of water droplets impinging on a polished surface”, International Journal of Heat and Mass Transfer, Vol.40 (1997),pp. 247–267.
[24]Ping-Hei Chen, Chin-Chi Hsu” Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings”, International Journal of Heat and Mass Transfer, Vol.55 (2012) ,pp. 3713–3719.
[25]王仲凱,“奈米流體應用於池沸騰熱傳增強研究”,台灣大學機械工程所,台北,(2008)。
[26]高逢時,“奈米科技”,科學發展,386期,頁66-71,2005。
[27]Y. Li, J. Zhou, S. Tung, E. Schneider, S. Xi, “A review on development of nanofluid preparation and characterization”, Powder Technology, Vol.196 (2009), pp.89-101.
[28]D. Wen,G. Lin, S. Vafaei, K. Zhang, “Review of nanofluidsfor heat transfer applications”,Particuology,Vol.7 (2009),pp.141-150.
[29]P. Keblinski ,S.R. Phillpot ,S.U.S. Choi, J. A. Eastman, “Mechanisms of heat flow in suspensions of nanosized particles(nanofluids)”, International Journal of Heat and Mass Transfer, Vol.45 (2002), pp.855-863.
[30]E. Cabrera, “Heat flux correlation for spray cooling in the nucleate boiling regime”,Experimental Heat Transfer, Vol.16, (2003).
[31]J.P.Holman, “Experimental Methods for Engineers”, McGraw-Hill, New York, (2000), pp.49-62.
[32]P. Bhattacharya, S.K. Saha , A. Yadav , P.E. Phelan, R.S. Prasher, “Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids”, J.Appl.Phys, Vol.95 (2004), pp.6492-6494.
[33]Lanchao Lin and Rengasamy Ponnappan “Heat transfer characteristics of spray cooling in a closed loop” International Journal of Heat and Mass Transfer, Vol.46 (2003), pp.3737-3746.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top