跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/21 05:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍逸帆
研究生(外文):Lan Yi-Fan
論文名稱:探討微型核醣核酸494於腎臟之生理、病理及分子機轉
論文名稱(外文):The investigation of microRNA-494 in kidney physiology, pathology andmolecular mechanisms
指導教授:黃彥達黃彥達引用關係
指導教授(外文):Huang Yen-Ta
口試委員:林恒楊瑞彬鄭敬楓劉怡均
口試委員(外文):Lin HengYang Ruey BingCheng Ching FengLiu Yi Chun
口試日期:2013-05-23
學位類別:博士
校院名稱:慈濟大學
系所名稱:藥理暨毒理學碩士班/博士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:68
中文關鍵詞:急性腎損傷活性轉錄因子3微型核醣核酸
外文關鍵詞:Acute kidney injuryATF3microRNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
急性腎損傷(AKI)是危重患者常見的併發症之一,發病率和死亡率持續增加。缺血和腎毒性(如感染性休克)是造成急性腎損傷的主要原因。儘管在新療法上有進步,但仍無足夠敏感或無創性之早期檢測的工具。且在我們先前之文獻指出活性轉錄音子3在急性腎損傷情況下扮演保護作用,活性轉錄因子3是轉錄因子且在生理與病理扮演重要角色,微型核醣核酸是19-25核甘酸大小之非轉錄核醣核酸,先前文獻指出miR-494在不同細胞層級扮演細胞凋亡和壞死之角色仍然未知。使用TargetScan,我們發現miR-494可與活性轉錄因子的3'非轉譯區(3'UTR)互補。我們也同樣證明miR-494能下降ATF3的3'UTR之螢光素表達,並利用質體轉殖miR-494能減少thapsigargin所誘發之ATF3表達。此外,過度表達miR-494使得小鼠腎臟ATF3顯著衰減,並誘導細胞介素6(IL-6)、單核細胞趨化蛋白-1(MCP-1)、P-選擇素等增加,最終導致細胞凋亡與腎功能降低。過度表達之miR-494 使得NFκB的激活並隨之增強IL-6基因之轉錄。更重要的是,在I/ R模型,尿中miR-494的水平不僅顯著增強,更早出現於血清肌酐水平升高之前。臨床數據顯示,尿中miR-494的表達相較於急性腎損傷(AKI)患者高20倍,尿中的miR-494在AKI患者比較AKI已知之生物標誌物的嗜中性白血球明膠相關性脂質運載蛋白其趨勢是一致的。所以,我們的結論是於小鼠腎臟損傷I / R後,miR-494上升,進而抑制ATF3之表達,使得炎症和粘附分子誘導增加。本研究結果顯示miR-494能作為一個診斷AKI之非侵入性指標。
關鍵詞:活性轉錄因子3、微型核醣核酸、急性腎損傷
Abstract
Acute kidney injury (AKI) is a common complication of critically ill patients and is associated with increased morbidity and mortality. Ischemia and nephrotoxic (like sepsis shock) injuries are the major causes of AKI in native and transplanted kidneys. Despite efforts and advances in the development of new therapeutics, there are not adequately sensitive or noninvasive tools for the early detection of AKI. Our previous studies suggested that activating transcription factor 3 may play a protective role for kidney upon AKI. ATF3 is a transcription factors and play different role in physiology and phathology. Our previous studies suggested that ATF3 may play a protective role for kidney upon AKI. MicroRNA (miRNA) are 19 to 25nt small non-coding RNA molecules. Previously studies indicated miRNA-494 mediates apoptosis and necrosis in several types of cells is unknown; Using TargetScan, we found that the 3' untranslated region (3'UTR) of activating transcription factor 3 (ATF3) is complementary to miR-494. We also demonstrated that miR-494 decreased the luciferase reporter activity by binding to the 3'UTR of ATF3, and overexpression of miR-494 via lentivirus infection decreased thapsigargin-induced ATF3 expression. Furthermore, overexpression of miR-494 in mice significantly attenuated ATF3 level, and, in turn, induced inflammatory mediators, interleukin-6 (IL-6), monocyte chemotactic protein-1, and P-selectin, resulting in apoptosis and decreased renal function. Molecular and biochemical analyses revealed that miR-494 induced following ischemia/reperfusion (I/R) in mice decreased renal function. Induction of miR-494 was mediated
iii
by nuclear factor-kappa B activation and subsequently enhanced IL-6 gene transcription. Importantly, in this I/R model, the urinary miR-494 levels were not only significantly enhanced but also appeared earlier than the elevation of serum creatinine levels. Clinical assessments showed that urinary miR-494 excretion was 20-fold higher in patients with acute kidney injury (AKI) than in normal controls, and increasing levels of urinary miR-494 in AKI patients are consistent with the comparable AKI biomarker gelatinase-associated lipocalin. We conclude that up-regulation of miR-494 contributes to inflammatory and/or adhesion-molecule-induced kidney injury after I/R via inhibition of ATF3 expression. Furthermore, miR-494 appears to act as a specific and non-invasive indicator of AKI patients and could indicate ongoing kidney injury.
Keywords: ATF3、microRNA、Acute kidney injury
Contents
Page
致謝
英文摘要
中文摘要
List of Figures
List of Tables
Introduction
1.1 Kidney diseases
1.1.1 Acute kidney injury
1.1.2 Ischemia Reperfusion injury
1.1.3 Chronic kidney disease
1.1.4 Generation of inflammatory mediators by renal tubule cells
1.2 The family of Activating Transcription Factor
1.2.1 Activating Transcription Factor
1.2.2 ATF3 and inflammatory
1.2.3 ATF3 and urine exosome
1.3 microRNAs
1.3.1 Biogenesis of microRNA
1.3.2 Functions of microRNA in kidney physiology and pathology
1.3.2 microRNA and inflammatory
1.3.3 microRNA and biomarker
1.3.4 miRNA-494 and disease
Materiasl and methods
Results
Discussion
Conclusion
References
Appendix

Adachi, T., Nakanishi, M., Otsuka, Y., Nishimura, K., Hirokawa, G., Goto, Y., Nonogi, H., and Iwai, N. (2010). Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem 56, 1183-1185.
Agrawal, R., Tran, U., and Wessely, O. (2009). The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 136, 3927-3936.
Alvarez-Garcia, I., and Miska, E.A. (2005). MicroRNA functions in animal development and human disease. Development 132, 4653-4662.
Barnes, P.J. (1997). Nuclear factor-kappa B. Int J Biochem Cell Biol 29, 867-870.
Bhatt, K., Zhou, L., Mi, Q.S., Huang, S., She, J.X., and Dong, Z. (2010). MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol Med 16, 409-416.
Bohnsack, M.T., Czaplinski, K., and Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185-191.
Bonventre, J.V. (1993). Mechanisms of ischemic acute renal failure. Kidney Int 43, 1160-1178.
Bonventre, J.V., and Zuk, A. (2004). Ischemic acute renal failure: an inflammatory disease? Kidney Int 66, 480-485.
Boros, P., and Bromberg, J.S. (2006). New cellular and molecular immune pathways in ischemia/reperfusion injury. Am J Transplant 6, 652-658.
Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B., and Cohen, S.M. (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25-36.
Bridgewater, D.J., Dionne, J.M., Butt, M.J., Pin, C.L., and Matsell, D.G. (2008). The role of the type I insulin-like growth factor receptor (IGF-IR) in glomerular integrity. Growth Horm IGF Res 18, 26-37.
58
Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101, 2999-3004.
Chang, S.S., Jiang, W.W., Smith, I., Poeta, L.M., Begum, S., Glazer, C., Shan, S., Westra, W., Sidransky, D., and Califano, J.A. (2008). MicroRNA alterations in head and neck squamous cell carcinoma. Int J Cancer 123, 2791-2797.
Chen, B.P., Liang, G., Whelan, J., and Hai, T. (1994). ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem 269, 15819-15826.
Cheng, C.F., Lian, W.S., Chen, S.H., Lai, P.F., Li, H.F., Lan, Y.F., Cheng, W.T., and Lin, H. (2012). Protective effects of adiponectin against renal ischemia-reperfusion injury via prostacyclin-PPARalpha-heme oxygenase-1 signaling pathway. J Cell Physiol 227, 239-249.
Chu, H.M., Tan, Y., Kobierski, L.A., Balsam, L.B., and Comb, M.J. (1994). Activating transcription factor-3 stimulates 3',5'-cyclic adenosine monophosphate-dependent gene expression. Mol Endocrinol 8, 59-68.
Daha, M.R., and van Kooten, C. (2000). Is the proximal tubular cell a proinflammatory cell? Nephrol Dial Transplant 15 Suppl 6, 41-43.
Davis, B.N., Hilyard, A.C., Nguyen, P.H., Lagna, G., and Hata, A. (2010). Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39, 373-384.
Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F., and Hannon, G.J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235.
Deutsch, P.J., Hoeffler, J.P., Jameson, J.L., Lin, J.C., and Habener, J.F. (1988). Structural determinants for transcriptional activation by cAMP-responsive DNA elements. J Biol Chem 263, 18466-18472.
Eckardt, K.U., Berns, J.S., Rocco, M.V., and Kasiske, B.L. (2009). Definition and classification of CKD: the debate should be about patient prognosis--a position statement from KDOQI and
KDIGO. Am J Kidney Dis 53, 915-920.
59
Edelstein, C.L., Ling, H., and Schrier, R.W. (1997a). The nature of renal cell injury. Kidney Int 51, 1341-1351.
Edelstein, C.L., Ling, H., Wangsiripaisan, A., and Schrier, R.W. (1997b). Emerging therapies for acute renal failure. Am J Kidney Dis 30, S89-95.
Esquela-Kerscher, A., and Slack, F.J. (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6, 259-269.
Fawcett, T.W., Martindale, J.L., Guyton, K.Z., Hai, T., and Holbrook, N.J. (1999). Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339 ( Pt 1), 135-141.
Foley, R.N., Murray, A.M., Li, S., Herzog, C.A., McBean, A.M., Eggers, P.W., and Collins, A.J. (2005). Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol 16, 489-495.
Gartel, A.L., and Kandel, E.S. (2008). miRNAs: Little known mediators of oncogenesis. Semin Cancer Biol 18, 103-110.
Gerritsma, J.S., van Kooten, C., Gerritsen, A.F., van Es, L.A., and Daha, M.R. (1998). Transforming growth factor-beta 1 regulates chemokine and complement production by human proximal tubular epithelial cells. Kidney Int 53, 609-616.
Gilchrist, M., Henderson, W.R., Jr., Clark, A.E., Simmons, R.M., Ye, X., Smith, K.D., and Aderem, A. (2008). Activating transcription factor 3 is a negative regulator of allergic pulmonary inflammation. J Exp Med 205, 2349-2357.
Gilchrist, M., Thorsson, V., Li, B., Rust, A.G., Korb, M., Roach, J.C., Kennedy, K., Hai, T., Bolouri, H., and Aderem, A. (2006). Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173-178.
Godwin, J.G., Ge, X., Stephan, K., Jurisch, A., Tullius, S.G., and Iacomini, J. (2010). Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A 107, 14339-14344.
60
Gould, S.E., Day, M., Jones, S.S., and Dorai, H. (2002). BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int 61, 51-60.
Gregory, P.A., Bert, A.G., Paterson, E.L., Barry, S.C., Tsykin, A., Farshid, G., Vadas, M.A., Khew-Goodall, Y., and Goodall, G.J. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10, 593-601.
Gregory, R.I., Chendrimada, T.P., Cooch, N., and Shiekhattar, R. (2005). Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631-640.
Gregory, R.I., Yan, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240.
Hai, T., and Curran, T. (1991). Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci U S A 88, 3720-3724.
Hai, T.W., Horikoshi, M., Roeder, R.G., and Green, M.R. (1988). Analysis of the role of the transcription factor ATF in the assembly of a functional preinitiation complex. Cell 54, 1043-1051.
Hai, T.W., Liu, F., Coukos, W.J., and Green, M.R. (1989). Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 3, 2083-2090.
Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., and Kim, V.N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18, 3016-3027.
Hanke, M., Hoefig, K., Merz, H., Feller, A.C., Kausch, I., Jocham, D., Warnecke, J.M., and Sczakiel, G. (2010). A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28, 655-661.
Hartman, M.G., Lu, D., Kim, M.L., Kociba, G.J., Shukri, T., Buteau, J., Wang, X., Frankel, W.L., Guttridge, D., Prentki, M., et al. (2004). Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol Cell Biol 24, 5721-5732.
61
Harvey, S.J., Jarad, G., Cunningham, J., Goldberg, S., Schermer, B., Harfe, B.D., McManus, M.T., Benzing, T., and Miner, J.H. (2008). Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol 19, 2150-2158.
He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, S., Cordon-Cardo, C., Lowe, S.W., Hannon, G.J., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435, 828-833.
Hou, S.H., Bushinsky, D.A., Wish, J.B., Cohen, J.J., and Harrington, J.T. (1983). Hospital-acquired renal insufficiency: a prospective study. Am J Med 74, 243-248.
Hsu, J.C., Laz, T., Mohn, K.L., and Taub, R. (1991). Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci U S A 88, 3511-3515.
Kapper, S., Beck, G., Riedel, S., Prem, K., Haak, M., van der Woude, F.J., and Yard, B.A. (2002). Modulation of chemokine production and expression of adhesion molecules in renal tubular epithelial and endothelial cells by catecholamines. Transplantation 74, 253-260.
Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J.J., and Natarajan, R. (2007). MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104, 3432-3437.
Kelly, K.J., and Molitoris, B.A. (2000). Acute renal failure in the new millennium: time to consider combination therapy. Semin Nephrol 20, 4-19.
Khuu, C.H., Barrozo, R.M., Hai, T., and Weinstein, S.L. (2007). Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages. Mol Immunol 44, 1598-1605.
Kielar, M.L., John, R., Bennett, M., Richardson, J.A., Shelton, J.M., Chen, L., Jeyarajah, D.R., Zhou, X.J., Zhou, H., Chiquett, B., et al. (2005). Maladaptive role of IL-6 in ischemic acute renal failure. J Am Soc Nephrol 16, 3315-3325.
Kim, W.K., Park, M., Kim, Y.K., Tae, Y.K., Yang, H.K., Lee, J.M., and Kim, H. (2011). MicroRNA-494 downregulates KIT and inhibits gastrointestinal stromal tumor cell proliferation. Clin Cancer Res 17, 7584-7594.
62
Krupa, A., Jenkins, R., Luo, D.D., Lewis, A., Phillips, A., and Fraser, D. (2010). Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21, 438-447.
Krutzfeldt, J., Kuwajima, S., Braich, R., Rajeev, K.G., Pena, J., Tuschl, T., Manoharan, M., and Stoffel, M. (2007). Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 35, 2885-2892.
Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., and Stoffel, M. (2005). Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685-689.
Lee, Y., Jeon, K., Lee, J.T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21, 4663-4670.
Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060.
Levey, A.S., and Coresh, J. (2012). Chronic kidney disease. Lancet 379, 165-180.
Levey, A.S., Coresh, J., Balk, E., Kausz, A.T., Levin, A., Steffes, M.W., Hogg, R.J., Perrone, R.D., Lau, J., and Eknoyan, G. (2003). National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 139, 137-147.
Levey, A.S., Stevens, L.A., and Coresh, J. (2009). Conceptual model of CKD: applications and implications. Am J Kidney Dis 53, S4-16.
Levy, E.M., Viscoli, C.M., and Horwitz, R.I. (1996). The effect of acute renal failure on mortality. A cohort analysis. JAMA 275, 1489-1494.
Li, D., Yin, X., Zmuda, E.J., Wolford, C.C., Dong, X., White, M.F., and Hai, T. (2008). The repression of IRS2 gene by ATF3, a stress-inducible gene, contributes to pancreatic beta-cell apoptosis. Diabetes 57, 635-644.
Li, H., and Nord, E.P. (2002). CD40 ligation stimulates MCP-1 and IL-8 production, TRAF6 recruitment, and MAPK activation in proximal tubule cells. Am J Physiol Renal Physiol 282, F1020-1033.
Li, H.F., Cheng, C.F., Liao, W.J., Lin, H., and Yang, R.B. (2010). ATF3-mediated epigenetic
63
regulation protects against acute kidney injury. J Am Soc Nephrol 21, 1003-1013.
Liano, F., and Pascual, J. (1996). Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int 50, 811-818.
Lieberthal, W., Koh, J.S., and Levine, J.S. (1998). Necrosis and apoptosis in acute renal failure. Semin Nephrol 18, 505-518.
Lin, H., Cheng, C.F., Hou, H.H., Lian, W.S., Chao, Y.C., Ciou, Y.Y., Djoko, B., Tsai, M.T., Cheng, C.J., and Yang, R.B. (2008). Disruption of guanylyl cyclase-G protects against acute renal injury. J Am Soc Nephrol 19, 339-348.
Lin, S.L., Chang, D., and Ying, S.Y. (2005). Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene 356, 32-38.
Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95-98.
Meister, G., Landthaler, M., Dorsett, Y., and Tuschl, T. (2004). Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10, 544-550.
Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O'Briant, K.C., Allen, A., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105, 10513-10518.
Montminy, M.R., and Bilezikjian, L.M. (1987). Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328, 175-178.
Munshi, R., Johnson, A., Siew, E.D., Ikizler, T.A., Ware, L.B., Wurfel, M.M., Himmelfarb, J., and Zager, R.A. (2011). MCP-1 gene activation marks acute kidney injury. J Am Soc Nephrol 22, 165-175.
O'Connell, R.M., Rao, D.S., Chaudhuri, A.A., and Baltimore, D. (2010). Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10, 111-122.
O'Connell, R.M., Taganov, K.D., Boldin, M.P., Cheng, G., and Baltimore, D. (2007). MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U
64
S A 104, 1604-1609.
O'Neill, L.A., Sheedy, F.J., and McCoy, C.E. (2011). MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11, 163-175.
Ohdaira, H., Sekiguchi, M., Miyata, K., and Yoshida, K. (2012). MicroRNA-494 suppresses cell proliferation and induces senescence in A549 lung cancer cells. Cell Prolif 45, 32-38.
Okusa, M.D. (2002). The inflammatory cascade in acute ischemic renal failure. Nephron 90, 133-138.
Olaru, A.V., Ghiaur, G., Yamanaka, S., Luvsanjav, D., An, F., Popescu, I., Alexandrescu, S., Allen, S., Pawlik, T.M., Torbenson, M., et al. (2011). MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint. Hepatology 54, 2089-2098.
Ortiz, A. (2000). Nephrology forum: apoptotic regulatory proteins in renal injury. Kidney Int 58, 467-485.
Padanilam, B.J. (2003). Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol 284, F608-627.
Pan, J., Xia, L., Yao, L., and McEver, R.P. (1998). Tumor necrosis factor-alpha- or lipopolysaccharide-induced expression of the murine P-selectin gene in endothelial cells involves novel kappaB sites and a variant activating transcription factor/cAMP response element. J Biol Chem 273, 10068-10077.
Park, N.J., Zhou, H., Elashoff, D., Henson, B.S., Kastratovic, D.A., Abemayor, E., and Wong, D.T. (2009). Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15, 5473-5477.
Pastorelli, L.M., Wells, S., Fray, M., Smith, A., Hough, T., Harfe, B.D., McManus, M.T., Smith, L., Woolf, A.S., Cheeseman, M., et al. (2009). Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm Genome 20, 140-151.
Plaisance, S., Vanden Berghe, W., Boone, E., Fiers, W., and Haegeman, G. (1997). Recombination signal sequence binding protein Jkappa is constitutively bound to the NF-kappaB site of the
65
interleukin-6 promoter and acts as a negative regulatory factor. Mol Cell Biol 17, 3733-3743.
Ren, X.P., Wu, J., Wang, X., Sartor, M.A., Qian, J., Jones, K., Nicolaou, P., Pritchard, T.J., and Fan, G.C. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119, 2357-2366.
Ricci, Z., Cruz, D., and Ronco, C. (2008). The RIFLE criteria and mortality in acute kidney injury: A systematic review. Kidney Int 73, 538-546.
Rosenberger, C.M., Clark, A.E., Treuting, P.M., Johnson, C.D., and Aderem, A. (2008). ATF3 regulates MCMV infection in mice by modulating IFN-gamma expression in natural killer cells. Proc Natl Acad Sci U S A 105, 2544-2549.
Ruggiero, T., Trabucchi, M., De Santa, F., Zupo, S., Harfe, B.D., McManus, M.T., Rosenfeld, M.G., Briata, P., and Gherzi, R. (2009). LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages. FASEB J 23, 2898-2908.
Safirstein, R., Megyesi, J., Saggi, S.J., Price, P.M., Poon, M., Rollins, B.J., and Taubman, M.B. (1991). Expression of cytokine-like genes JE and KC is increased during renal ischemia. Am J Physiol 261, F1095-1101.
Schiffl, H. (2002). Daily haemodialysis for acute renal failure. Curr Opin Nephrol Hypertens 11, 589-592.
Segerer, S., Nelson, P.J., and Schlondorff, D. (2000). Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 11, 152-176.
Shapiro, M.D., Bagley, J., Latz, J., Godwin, J.G., Ge, X., Tullius, S.G., and Iacomini, J. (2011). MicroRNA expression data reveals a signature of kidney damage following ischemia reperfusion injury. PLoS One 6, e23011.
Sheridan, A.M., and Bonventre, J.V. (2000). Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr Opin Nephrol Hypertens 9, 427-434.
Shi, S., Yu, L., Chiu, C., Sun, Y., Chen, J., Khitrov, G., Merkenschlager, M., Holzman, L.B.,
66
Zhang, W., Mundel, P., et al. (2008). Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 19, 2159-2169.
Shusterman, N., Strom, B.L., Murray, T.G., Morrison, G., West, S.L., and Maislin, G. (1987). Risk factors and outcome of hospital-acquired acute renal failure. Clinical epidemiologic study. Am J Med 83, 65-71.
Singbartl, K., Green, S.A., and Ley, K. (2000). Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J 14, 48-54.
Sun, Y., Koo, S., White, N., Peralta, E., Esau, C., Dean, N.M., and Perera, R.J. (2004). Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32, e188.
Suzuki, T., and Tamada, H. (2009). WITHDRAWN: Modulation of microRNA processing by p53. Biochem Biophys Res Commun.
Taganov, K.D., Boldin, M.P., Chang, K.J., and Baltimore, D. (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103, 12481-12486.
Thadhani, R., Pascual, M., and Bonventre, J.V. (1996). Acute renal failure. N Engl J Med 334, 1448-1460.
Thai, T.H., Calado, D.P., Casola, S., Ansel, K.M., Xiao, C., Xue, Y., Murphy, A., Frendewey, D., Valenzuela, D., Kutok, J.L., et al. (2007). Regulation of the germinal center response by microRNA-155. Science 316, 604-608.
Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980-984.
Tian, Z., Greene, A.S., Pietrusz, J.L., Matus, I.R., and Liang, M. (2008a). MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res 18, 404-411.
Tian, Z., Greene, A.S., Usa, K., Matus, I.R., Bauwens, J., Pietrusz, J.L., Cowley, A.W., Jr., and
67
Liang, M. (2008b). Renal regional proteomes in young Dahl salt-sensitive rats. Hypertension 51, 899-904.
Tijsen, A.J., Creemers, E.E., Moerland, P.D., de Windt, L.J., van der Wal, A.C., Kok, W.E., and Pinto, Y.M. (2010). MiR423-5p as a circulating biomarker for heart failure. Circ Res 106, 1035-1039.
Tilney, N.L., and Guttmann, R.D. (1997). Effects of initial ischemia/reperfusion injury on the transplanted kidney. Transplantation 64, 945-947.
Wang, G., Chan, E.S., Kwan, B.C., Li, P.K., Yip, S.K., Szeto, C.C., and Ng, C.F. (2012). Expression of microRNAs in the urine of patients with bladder cancer. Clin Genitourin Cancer 10, 106-113.
Wang, X., Zhang, X., Ren, X.P., Chen, J., Liu, H., Yang, J., Medvedovic, M., Hu, Z., and Fan, G.C. (2010). MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation 122, 1308-1318.
Wang, X.H., Qian, R.Z., Zhang, W., Chen, S.F., Jin, H.M., and Hu, R.M. (2009). MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 36, 181-188.
Whitmore, M.M., Iparraguirre, A., Kubelka, L., Weninger, W., Hai, T., and Williams, B.R. (2007). Negative regulation of TLR-signaling pathways by activating transcription factor-3. J Immunol 179, 3622-3630.
Wiesen, J.L., and Tomasi, T.B. (2009). Dicer is regulated by cellular stresses and interferons. Mol Immunol 46, 1222-1228.
Winter, J., Jung, S., Keller, S., Gregory, R.I., and Diederichs, S. (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11, 228-234.
Xiong, M., Jiang, L., Zhou, Y., Qiu, W., Fang, L., Tan, R., Wen, P., and Yang, J. (2012). The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol 302, F369-379.
68
Xu, P., Vernooy, S.Y., Guo, M., and Hay, B.A. (2003). The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13, 790-795.
Yang, W., Chendrimada, T.P., Wang, Q., Higuchi, M., Seeburg, P.H., Shiekhattar, R., and Nishikura, K. (2006). Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13, 13-21.
Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016.
Zarjou, A., Yang, S., Abraham, E., Agarwal, A., and Liu, G. (2011). Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol 301, F793-801.
Zeng, Y., Cai, X., and Cullen, B.R. (2005). Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol 392, 371-380.
Zhang, B., Pan, X., Cobb, G.P., and Anderson, T.A. (2007). microRNAs as oncogenes and tumor suppressors. Dev Biol 302, 1-12.
Zhou, H., Cheruvanky, A., Hu, X., Matsumoto, T., Hiramatsu, N., Cho, M.E., Berger, A., Leelahavanichkul, A., Doi, K., Chawla, L.S., et al. (2008). Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int 74, 613-621.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top