|
[1]K. Ko et al., “BD180LV - 0.18 μm BCD technology with best-in-class LDMOS from 7V to 30V”, in Proc. Int. ISPSD Conf., 2010, pp. 71-74. [2]I. Park et al., “BD180 - a new 0.18 μm BCD (Bipolar-CMOS-DMOS) Technology from 7V to 60V”, in Proc. Int. ISPSD Conf., 2008, pp. 64-67. [3]H. Chang et al,. “Advanced 0.13um smart power technology from 7V to 70V”, in Proc. Int. ISPSD Conf., 2012, pp. 217-220. [4]A. Ludikhuize, “A review of RESURF technology,” in Proc. Int. ISPSD Conf., 2000, pp. 11. [5]S.Hardikar et al., “A novel double RESURF LDMOS for HVIC’s”, Microelectronics Journal,2004, pp.305. [6]J. Wu et al., “A Novel Double RESURF LDMOS with Multiple Rings in Non-uniform Drift Region”, in 7th International Conference on Solid-State and Integrated Circuits Technology, 2004, pp.349 - 352 vol.1. [7]B. Buono et al., “Influence of Emitter Width and Emitter–Base Distance on the Current Gain in 4H-SiC Power BJTs”, in IEEE Electron Device Transactions, 2010, pp. 2664 – 2670. [8]R. Pan et al, “High Voltage (up to 20V) devices implementation in 0.13 um BiCMOS process technology for System-On-Chip (SOC) design”, ISPSD 2006, pp. 349-352. [9]D. Riccardi et al., “BCD8 from 7V to 70V: a new 0.18 um technology platform to address the evolution of applications towards smart power ICs with high logic contents”, ISPSD 2006, pp. 73-76. [10]P. Zhang, Y. Wang, S. Jia and X. Zhang, “LDMOS–SCR: a replacement for LDMOS with high ESD self-protection ability for HV application”, 2012 Semicond. Sci. Technol. 27. [11]P. Zhang, Y. Wang, S. Jia and X. Zhang, “Study of LDMOS-SCR: a high Voltage ESD protection device”, ICSICT 2010, pp. 1722-1724. [12]Z. Liu, Juin J. Liou, and J. Vinson, “Novel Silicon-Controlled Rectifier (SCR) for High-Voltage Electrostatic Discharge (ESD) applications”, Electron Device Letters, pp. 753-755. [13]H. Sarbishaei, “Electrostatic discharge protection circuit for high speed Mixed-Signal circuits”, Canada, 2007. [14]Y. M. Lee, et al., “Design of multiple RESURF LDMOS with p-top rings and STI regions in 65nm CMOS technology”, TENCON 2011, pp. 752-755. [15]B.Murari, F.Bertotti, and G.A. Vignola, SMARTPOWERIC’s, Springer, New York, 1996. [16]J.A. van der Pol, et al. “ABCD: An Economic 100V RESURF Silicon-On-Insulator BCD Technology for Consumer and Automotive Applications”, ISPSD’2000 Proceedings, Toulouse, France, May 2000, pp. 327-330. [17]C. Contiero, et al., “LDMOS Implementation by Large Tilt Implant in 0.6μm BCD5 Process, Flash Memory Compatible”,ISPSD’96 Proceedings, Maui, Hawaii, USA, 1996, pp.75-78. [18]C. Contiero, et al., “Characteristics and Applications of a 0.6 μm Bipolar-CMOS-DMOS Technology combining VLSI Non-Volatile Memories”, IEDM’96 Proceedings, San Francisco, CA, USA, Dec. 1996, pp. 465-468. [19]Moscatelli, et al., “ LDMOS Implementation in a 0.35 μm BCD Technology (BCD6)”, ISPSD’2000 Proceedings, Toulouse, France, May 2000, pp. 323-326. [20]M.D. Pocha, A.G. Gonzalez and RW. Dutton, "Threshold Voltage Controllability in Double Diffused-MOS Transistors.“IEEE Trans. Electron Devices, Vol. ED-21, No. 12, 1974. [21]L. Steinbeck, et al., “ESD protection of NDMOS in 0.18μm high-voltage CMOS technology for automotive applications,” in Proc. 20th Int. Symp. Power Semiconductor Devices & IC’s, May 18-22, 2008 Orlando, FL (ISPSD 2008), pp. 221–224. [22]V. Parthasarathy, et al., “A double resurf LDMOS with drain profile engineering for improved ESD robustness,” IEEE Electron Device Letters, Vol. 23, No. 4, April 2002, pp. 212–214. [23]Peng Zhang, et al., “LDMOS–SCR: a replacement for LDMOS with high ESD self-protection ability for HV application”, 2012 Semiconductor. Science Technology 27. [24]Zhiwei Liu, Juin J. Liou, and Jim Vinson, “Novel Silicon-Controlled Rectifier (SCR) for High-Voltage Electrostatic Discharge (ESD) Applications”, IEEE Electron Device Letters, pp. 753-755. [25]M.-D. Ker, and K.-H. Lin, “Double snapback characteristics in highvoltage nMOSFET and the impact on on-chip ESD protection design,” IEEE Electron Device Letters, Vol. 25, No. 9, September 2004, pp. 640–642. [26]Jedec Standard, “ESD sensitivity testing HBM”, JESD22-A114F, Jedec Solid State Technology Association, December 2008. [27]N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and hole mobilities in silicon as a function of concentration and temperature”, IEEE Transactions Electron Devices, Vol. ED-29, pp. 292-295, Feb. 1982. [28]M. Valdinoci, et al., “Impact-ionization in silicon at large operating temperature”, International Conference on Simulation of Semiconductor Processes and Devices, Sept. 6-8 1999. [29]H.C. Lin and W.N. Jones, "Computer Analysis of the Double-Diffused MOS Transistor for Integrated Circuits.",IEEE Trans. Electron Devices, Vol. ED-20, No. 3, pp. 275-283, 1973. [30]D.H. Harper and RE. Thomas, "Diffusion Current Effects in DMOS Transistors.” IEEE Int .Electron Devices Meeting, 1978, pp. 34-37. [31]M.J. Dec1erq and J.D. Plummer, "Avalanche Breakdown in High-Voltage D-MOS Devices:”IEEE Trans. Electron Devices, Vol. ED-23, pp. 1-4, 1976. [32]S. G. Duvall, “An interchange format for process and device simulation,” IEEE Trans. on CAD, v CAD-7, p 741-54, 1988. [33]Robert W. Dutton and A. J. Strojwas, “Perspectives on technology and technology driven CAD”, IEEE trans. on CAD of integrated circuit and systems, v 19, n 12, p1544-60, 2000. [34]Sentaurus User’s Manual, Version F-2011.09, Synopsys, 2011. [35]G. Chin, et. al., “Linking TCAD to EDA – benefits and issues” ,IEEE proc. Design Automation Conference, p 573-78, 1991. [36]MEDICI User’s Manual, Version F-2011.09, Synopsys, 2011. [37]A. Moscatelli et al., “LDMOS implementation in a 0.35 µm BCD technology (BCD6),” in Proc. ISPSD, 2000, pp. 323–326.
|