(3.231.230.175) 您好!臺灣時間:2021/04/16 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:Emita Yulia Hapsari
研究生(外文):Emita Yulia Hapsari
論文名稱:Process Integration of a Novel 0.18µm Bipolar CMOS DMOS Technology and LDMOS Electrostatic Discharge Reliability Study
論文名稱(外文):Process Integration of a Novel 0.18µm Bipolar CMOS DMOS Technology and LDMOS Electrostatic Discharge Reliability Study
指導教授:楊紹明
指導教授(外文):Shao-Ming Yang
口試委員:許健楊紹明簡鳳佐
口試委員(外文):Gene SheuShao-Ming YangFeng-Tso Chien
口試日期:2013-05-27
學位類別:碩士
校院名稱:亞洲大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:67
中文關鍵詞:BCDLinear P-top LDMOScurrent gainESDHBMP+ insertionSTI-sided LDMOSsilicon controlled rectifier
外文關鍵詞:BCDLinear P-top LDMOScurrent gainESDHBMP+ insertionSTI-sided LDMOSsilicon controlled rectifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:581
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In this thesis, a 0.18µm Bipolar CMOS DMOS (BCD) technology is simulated using Synopsys TCAD simulators. The process integration covers 5V to 60V operating voltage of some devices such as CMOS, Bipolar junction transistor (BJT), low-side N-channel LDMOS, high-side N-channel LDMOS and P-channel LDMOS with best in class specific-on resistance (Ron) for DMOS structures. Comparison of single resurf, double resurf and linear P-top is studied to get the best trade-off between breakdown voltage and Ron. The optimization of current gain of 20V BJT has been done by adjustment of emitter width and boron doping concentration of base with increasing of current gain up to ten times higher without significantly change the breakdown voltage.
Comparison between original and Silicon Controlled Rectifier (SCR) structure of a novel Shallow Trench Isolation (STI)-sided LDMOS with P-top layer is firstly presented. SCR structure can be used as a robust Electrostatic Discharge (ESD) protection device as its failure current (It2) is five times higher compared to original structure. This high It2 also results in optimizing of device width as the hot spot area is wider. The low holding voltage (Vh) of SCR structure is optimized by increasing the doping concentration of P-Body to minimize the risk of induced latch-up. The modification of surface doping concentration is the best way to increase the Vh as the crowded current of SCR structure is placed under the channel and source region while maintaining It2 below ESD thermal failure.

In this thesis, a 0.18µm Bipolar CMOS DMOS (BCD) technology is simulated using Synopsys TCAD simulators. The process integration covers 5V to 60V operating voltage of some devices such as CMOS, Bipolar junction transistor (BJT), low-side N-channel LDMOS, high-side N-channel LDMOS and P-channel LDMOS with best in class specific-on resistance (Ron) for DMOS structures. Comparison of single resurf, double resurf and linear P-top is studied to get the best trade-off between breakdown voltage and Ron. The optimization of current gain of 20V BJT has been done by adjustment of emitter width and boron doping concentration of base with increasing of current gain up to ten times higher without significantly change the breakdown voltage.
Comparison between original and Silicon Controlled Rectifier (SCR) structure of a novel Shallow Trench Isolation (STI)-sided LDMOS with P-top layer is firstly presented. SCR structure can be used as a robust Electrostatic Discharge (ESD) protection device as its failure current (It2) is five times higher compared to original structure. This high It2 also results in optimizing of device width as the hot spot area is wider. The low holding voltage (Vh) of SCR structure is optimized by increasing the doping concentration of P-Body to minimize the risk of induced latch-up. The modification of surface doping concentration is the best way to increase the Vh as the crowded current of SCR structure is placed under the channel and source region while maintaining It2 below ESD thermal failure.

DEDICATION i
ABSTRACT ii
ACKNOWLEGDE iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 1
INTRODUCTION 1
1.1. Background 1
1.2. Motivation 4
1.3. Thesis Organization 5
Chapter 2 7
BIPOLAR CMOS DMOS PROCESS TECHNOLOGY AND ELECTROSTATIC DISCHARGE OVERVIEW 7
2.1, Bipolar CMOS DMOS Process Technology 7
2.1.1. Bipolar CMOS DMOS Fabrication Process 7
2.1.1.1. Lithography 9
2.1.1.2. Silicon Oxidation 10
2.1.1.3. Diffusion and Ion Implantation 11
2.1.1.4. Ion Implantation 11
2.1.1.5. Film Deposition 12
2.1.2. Electrical Behavior 12
2.1.2.1. Breakdown voltage 12
2.1.2.2. Specific-on Resistance (Ron) 13
2.1.2.3. Transconductance 14
2.1.2.4. Threshold Voltage 15
2.2. Electrostatic Discharge 17
2.2.1. Human Body Model 17
2.2.2. Protection Device 19
2.2.2.1. Gate grounded NMOS 20
2.2.2.2. Silicon Controlled Rectifier 20
Chapter 3 22
SIMULATION METHODOLOGY 22
3.1. Introduction of Simulation Platform 22
3.2. Process Simulation 23
3.3. Device Simulation 25
3.4. Human Body Model 26
Chapter 4 28
RESULTS AND DISCUSSIONS OF 5V to 60V 0.18µm BIPOLAR CMOS DMOS PROCESS TECHNOLOGY 28
4.1. 0.18µm Bipolar CMOS DMOS Process Technology 28
4.1.1. Process Flow Layout 28
4.1.2. TCAD Simulation Process 30
4.2. 0.18µm Bipolar CMOS DMOS Device Structures 33
4.2.1. CMOS 33
4.2.1.1. NMOS 34
4.2.1.2. PMOS 35
4.2.2. Bipolar Junction Transistor 36
4.2.2.1. NPN 37
4.2.2.2. PNP 39
4.2.3. LDMOS 41
4.2.3.1. Low-side N-channel LDMOS 41
4.2.3.2 High-side N-channel LDMOS 46
4.2.3.3. P-channel LDMOS 48
Chapter 5 51
HUMAN BODY MODEL TEST OF ELECTROSTATIC DISCHARGE PROTECTION DEVICE RESULTS AND DISSCUSSIONS 51
5.1. Device Structure 51
5.1.1 GGNMOS 51
5.1.2 Silicon Controlled Rectifier 53
5.2. Human Body Model Test 55
5.2.1. Optimization of Failure Current 55
5.2.2. Optimization of Device Width 57
5.2.3 Optimization of Holding Voltage 59
Chapter 6 62
CONCLUSION 62
REFERENCES 63

[1]K. Ko et al., “BD180LV - 0.18 μm BCD technology with best-in-class LDMOS from 7V to 30V”, in Proc. Int. ISPSD Conf., 2010, pp. 71-74.
[2]I. Park et al., “BD180 - a new 0.18 μm BCD (Bipolar-CMOS-DMOS) Technology from 7V to 60V”, in Proc. Int. ISPSD Conf., 2008, pp. 64-67.
[3]H. Chang et al,. “Advanced 0.13um smart power technology from 7V to 70V”, in Proc. Int. ISPSD Conf., 2012, pp. 217-220.
[4]A. Ludikhuize, “A review of RESURF technology,” in Proc. Int. ISPSD Conf., 2000, pp. 11.
[5]S.Hardikar et al., “A novel double RESURF LDMOS for HVIC’s”, Microelectronics Journal,2004, pp.305.
[6]J. Wu et al., “A Novel Double RESURF LDMOS with Multiple Rings in Non-uniform Drift Region”, in 7th International Conference on Solid-State and Integrated Circuits Technology, 2004, pp.349 - 352 vol.1.
[7]B. Buono et al., “Influence of Emitter Width and Emitter–Base Distance on the Current Gain in 4H-SiC Power BJTs”, in IEEE Electron Device Transactions, 2010, pp. 2664 – 2670.
[8]R. Pan et al, “High Voltage (up to 20V) devices implementation in 0.13 um BiCMOS process technology for System-On-Chip (SOC) design”, ISPSD 2006, pp. 349-352.
[9]D. Riccardi et al., “BCD8 from 7V to 70V: a new 0.18 um technology platform to address the evolution of applications towards smart power ICs with high logic contents”, ISPSD 2006, pp. 73-76.
[10]P. Zhang, Y. Wang, S. Jia and X. Zhang, “LDMOS–SCR: a replacement for LDMOS with high ESD self-protection ability for HV application”, 2012 Semicond. Sci. Technol. 27.
[11]P. Zhang, Y. Wang, S. Jia and X. Zhang, “Study of LDMOS-SCR: a high Voltage ESD protection device”, ICSICT 2010, pp. 1722-1724.
[12]Z. Liu, Juin J. Liou, and J. Vinson, “Novel Silicon-Controlled Rectifier (SCR) for High-Voltage Electrostatic Discharge (ESD) applications”, Electron Device Letters, pp. 753-755.
[13]H. Sarbishaei, “Electrostatic discharge protection circuit for high speed Mixed-Signal circuits”, Canada, 2007.
[14]Y. M. Lee, et al., “Design of multiple RESURF LDMOS with p-top rings and STI regions in 65nm CMOS technology”, TENCON 2011, pp. 752-755.
[15]B.Murari, F.Bertotti, and G.A. Vignola, SMARTPOWERIC’s, Springer, New York, 1996.
[16]J.A. van der Pol, et al. “ABCD: An Economic 100V RESURF Silicon-On-Insulator BCD Technology for Consumer and Automotive Applications”, ISPSD’2000 Proceedings, Toulouse, France, May 2000, pp. 327-330.
[17]C. Contiero, et al., “LDMOS Implementation by Large Tilt Implant in 0.6μm BCD5 Process, Flash Memory Compatible”,ISPSD’96 Proceedings, Maui, Hawaii, USA, 1996, pp.75-78.
[18]C. Contiero, et al., “Characteristics and Applications of a 0.6 μm Bipolar-CMOS-DMOS Technology combining VLSI Non-Volatile Memories”, IEDM’96 Proceedings, San Francisco, CA, USA, Dec. 1996, pp. 465-468.
[19]Moscatelli, et al., “ LDMOS Implementation in a 0.35 μm BCD Technology (BCD6)”, ISPSD’2000 Proceedings, Toulouse, France, May 2000, pp. 323-326.
[20]M.D. Pocha, A.G. Gonzalez and RW. Dutton, "Threshold Voltage Controllability in Double Diffused-MOS Transistors.“IEEE Trans. Electron Devices, Vol. ED-21, No. 12, 1974.
[21]L. Steinbeck, et al., “ESD protection of NDMOS in 0.18μm high-voltage CMOS technology for automotive applications,” in Proc. 20th Int. Symp. Power Semiconductor Devices & IC’s, May 18-22, 2008 Orlando, FL (ISPSD 2008), pp. 221–224.
[22]V. Parthasarathy, et al., “A double resurf LDMOS with drain profile engineering for improved ESD robustness,” IEEE Electron Device Letters, Vol. 23, No. 4, April 2002, pp. 212–214.
[23]Peng Zhang, et al., “LDMOS–SCR: a replacement for LDMOS with high ESD self-protection ability for HV application”, 2012 Semiconductor. Science Technology 27.
[24]Zhiwei Liu, Juin J. Liou, and Jim Vinson, “Novel Silicon-Controlled Rectifier (SCR) for High-Voltage Electrostatic Discharge (ESD) Applications”, IEEE Electron Device Letters, pp. 753-755.
[25]M.-D. Ker, and K.-H. Lin, “Double snapback characteristics in highvoltage nMOSFET and the impact on on-chip ESD protection design,” IEEE Electron Device Letters, Vol. 25, No. 9, September 2004, pp. 640–642.
[26]Jedec Standard, “ESD sensitivity testing HBM”, JESD22-A114F, Jedec Solid State Technology Association, December 2008.
[27]N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and hole mobilities in silicon as a function of concentration and temperature”, IEEE Transactions Electron Devices, Vol. ED-29, pp. 292-295, Feb. 1982.
[28]M. Valdinoci, et al., “Impact-ionization in silicon at large operating temperature”, International Conference on Simulation of Semiconductor Processes and Devices, Sept. 6-8 1999.
[29]H.C. Lin and W.N. Jones, "Computer Analysis of the Double-Diffused MOS Transistor for Integrated Circuits.",IEEE Trans. Electron Devices, Vol. ED-20, No. 3, pp. 275-283, 1973.
[30]D.H. Harper and RE. Thomas, "Diffusion Current Effects in DMOS Transistors.” IEEE Int .Electron Devices Meeting, 1978, pp. 34-37.
[31]M.J. Dec1erq and J.D. Plummer, "Avalanche Breakdown in High-Voltage D-MOS Devices:”IEEE Trans. Electron Devices, Vol. ED-23, pp. 1-4, 1976.
[32]S. G. Duvall, “An interchange format for process and device simulation,” IEEE Trans. on CAD, v CAD-7, p 741-54, 1988.
[33]Robert W. Dutton and A. J. Strojwas, “Perspectives on technology and technology driven CAD”, IEEE trans. on CAD of integrated circuit and systems, v 19, n 12, p1544-60, 2000.
[34]Sentaurus User’s Manual, Version F-2011.09, Synopsys, 2011.
[35]G. Chin, et. al., “Linking TCAD to EDA – benefits and issues” ,IEEE proc. Design Automation Conference, p 573-78, 1991.
[36]MEDICI User’s Manual, Version F-2011.09, Synopsys, 2011.
[37]A. Moscatelli et al., “LDMOS implementation in a 0.35 µm BCD technology (BCD6),” in Proc. ISPSD, 2000, pp. 323–326.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔