跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 17:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖燕清
研究生(外文):Liao, Yan Ching
論文名稱:健康型與疾病型心律變異之比較研究
論文名稱(外文):Comparison Study of Time- and Frequency-Domain HRV for Healthy and Illness People
指導教授:張清濠
指導教授(外文):Chang, Ching-Haur
口試委員:蕭進松易昶霈張清濠
口試委員(外文):Hsiao, Chin-SungYi, Chang-PeiChang, Ching-Haur
口試日期:2013-06-06
學位類別:碩士
校院名稱:亞洲大學
系所名稱:光電與通訊學系碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:41
中文關鍵詞:心律變異度頻域時域
外文關鍵詞:HRVFrequency-DomainTime-Domain
相關次數:
  • 被引用被引用:8
  • 點閱點閱:706
  • 評分評分:
  • 下載下載:146
  • 收藏至我的研究室書目清單書目收藏:0
人類仰賴於科技的進步,知識的快速傳遞,電腦的普及發展,使得資訊傳遞更加迅速,也加快了工作效率與品質。另一方面,現代人的飲食習慣及生活壓力等因素也隨著工作效率的提升而改變,速食的普與生活壓力變大,加速導致心臟方面的疾病產生,造成近年來因心臟功能不良的死亡率越來越高。因此,在醫療技術裡,如何事先有效且準確地發現心臟疾病的問題是個非常重要的技術,在這些技術中,又以心電圖 (ECG) 來檢測心臟疾病最為直觀且廣為應用。
ECG是測量和診斷異常心臟節律的最好的方法,尤其是用來診斷心電傳導組織受損時心臟的節律異常以及因電解質平衡失調所引起的心臟節律之改變。
近幾年來,許多研究都在探討疾病與心律變異的關聯,而心律變異的數據有很多,這些數據用以觀察人體健康情況。郭正典與陳高揚(1997)指出,心率變異度(Heart Rate Variability,HRV)的分析簡單,可藉由定量方式來辨別交感與副交感的神經活性,為評估心臟與自律神經強度的一種方法。再者,Kleiger等[3]最早報導SDNN可預測心肌梗塞後的死亡,據此觀點,延伸至其他HRV分析後的SDNN、MeanB、MeanHR、SDHR、RMSSD、NNx、pNNx、SDNNi數據,做數據整理之後,經由SPSS統計分析結果,來了解是否這些指標是否能有『機會』來做出區分健康與否的『顯著差異』。
本研究利用PhysioBank中的兩組資料(Normal Sinus Rhythm R-R intervals、MIT-BIH Arrhythmia Database),提取其ECG資料中的R-R interval,利用HRV分析軟體(HRVAS_v1.0.0)來分析出數據,再經由統計分析軟體SPSS做不同分類(健康型與疾病型,健康型的男性與女性,疾病型的男性與女性)下的『獨立樣本的t檢定』,經由軟體顯示結果,我們發現在健康型與疾病型的分類比較中,MeanB、MeanHR、RMSSD、NNx、pNNx、Lomb-Scargle PSD、Burg PSD、Welch PSD、Power(n.u.)-LF、Power(n.u.)-HF都出現顯著差異,但是在『健康型的男性與女性』中,只有頻域出現顯著差異,而『疾病型的男性與女性』的分類比較,就沒有顯著差異。

With the fast growing of technology and wide popularity of computers, new information has been spread more quickly and working efficiency and quality have been improved accordingly. However, the change of working environment not only leads to high work pressure but also influences dietary habits, both of which further give rise to the high occurrence of heart-related diseases. Therefore, how to beforehand detect heart diseases effectively and accurately is a crucial technique. Among these techniques, using an ECG to detect heart diseases is most widely employed.
ECG is the best way used to measure the rate and regularity of heartbeats, as well as the size and position of the chambers, the presence of any damage to the heart, and the effects of drugs or devices used to regulate the heart, such as a pacemaker.
Recently, many studies have focused on the connection between disease and heart rate variability. Quo and Chen (1997) indicated that HRV is an easy way to distinguish the sympathetic and parasympathetic nervous activity, which can serve as an approach to evaluate the heat and automatic nerve. Besides, Kleiger pointed out that the use of SDNN can predict the death after myocardial infarction. Bases on this perspective, the data of SDNN, MeanB, MeanHR, SDHR, RMSSD, NNx, pNNx and SDNNi on the SPSS may be possibly adopted to find out whether there is significance between being healthy or non-healthy.
This research first retrieve two sets of data (Normal Sinus rhythm R-R intervals and MIT-BIH Arrhythmia Database) from the PhysioBank. Second, the data of R-R interval from ECG is analyzed by HRVAS_ v1.0.0. Further, the t-test is conducted with SPSS to examine the four groups based on gender and health condition. The statistic results indicated that there is significance in MeanB, MeanHR, RMSSD, NNx , pNNx ,Lomb-Scargle PSD,Burg PSD,Welch PSD,Power(n.u.)-LF and Power(n.u.)-HF. But, the significance is only shown in frequency-domain between healthy males and healthy females while no significance was found between sick males and sick females.

目 錄 …………………………………………………I
圖表索引 …………………………………………………II
中文摘要 …………………………………………………IV
Abstract ……………………………………………VII


第 一 章 緒論………………………………………1
第 二 章 相關理論與分析工具…………3
第 三 章 研究方法………………………………9
第 四 章 分析結果………………………………20
第 五 章 結論與討論………………………35

參考文獻 …………………………………………………41

參考文獻
[1] http://www.ni.com/white-paper/6349/zhs
[2]郭正典、陳高揚(1997):心率變異度及心肺功能失常。臨床醫學,39(5),271-274
[3]Schwa r tz PJ, Stone HL:The role of the autonomic nervous
system in sudden coronary death. Ann N YAcad Sci 382:162-180,1982.
[4]http://zh.wikipedia.org/wiki/%E5%BF%83%E7%8E%87%E8%AE%8A%E7%95%B0%E5%88%86%E6%9E%90
[5] http://ir.lib.nthu.edu.tw/handle/987654321/94107
[6]Ariagno RL, Mirmiran M, Adams MM, et al.:Effect of position on sleep, heart rate variability, and QT interval in preterm infants at 1 and 3 months' corrected age. Pediatrics 111:622-625, 2003.
[7]Longin E, Gerstner T, Schaible T, et al.:Maturation of the autonomic nervous system: differences in heart rate variability in premature vs. term infants. J Perinat Med 34:303-308,2006.
[8]Pizzi C, Manzoli L, Mancini S, et al.:Analysis of potential predictors of depression among coronary heart disease risk factors including heart rate variability, markers of inflammation, and endothelial function. Eur Hear t J 29:1110-1117, 2008.
[9]楊正榮, 2004, 以小波轉換為基礎的 QRS 波偵測方法, 碩士論文, 中山大學機電工程研究所。
[10]http://www.physionet.org/tutorials/hrv/
[11]http://eleceng.dit.ie/tburke/biomed/assignment1.html
[12]Mina Ako, Tokuhiro Kawara, Sunao Uchida, Shinichi Miyazaki Kyoko Nishihara,Junko Mukai, Kenzo Hirao, Junya Ako, Yoshiro Okubo,2003, “Correlationbetween electroencephalography and heart rate variability during sleep,”Psychiatric and Clinical Neurosciences,57:59-65.
[13]翁根本、何慈育、歐善福、林竹川、謝凱生,2009,心律變動性分析,台灣醫界 52 卷 第6期,頁290-293。
[14]Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, 1996, “Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use, ” American Heart Association- Circulation, 93:1043-1065. (http://circ.ahajournals.org/cgi/content/full/93/5/1043)
[15]H. Qtzenberger, C. Simon, C. Gronfier, G. Brandenberger,, 1997. “Temporal relationship between dynamic heart rate variability and electroencephalographic activity during sleep in man,” Neurosci. Lett. 229:173-176.
[16]林羣晨(2007),以心電圖為基礎之心血管疾病專家防治系統。
[17]http://physionet.org/cgi-bin/atm/ATM
[18]J. P. Niskanen, M. P. Tarvainen, P. O. Ranta-aho, P. A. Karjalainen,“Software for advanced HRV analysis”, Computer Methods and Programs in Biomedicine , Vol.76, pp.73-81, 2004.
[19]J. Mateo, P. Laguna, “Improved heart rate variability signal analysis from the beat occurrence times according to the IPFM Model”, IEEE Trans. Biomed., Vol.47, pp.985-996, 2000.
[20]成令方,2010,為什麼醫療需要有性別觀點?台灣醫學 14 卷5 期,頁560-564。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top