跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張鋅權
研究生(外文):Zhang, Xin-Quan
論文名稱:二維奈米材料硼氮碳、氮化硼、二硫化鉬的合成、 鑑定與應用
論文名稱(外文):Synthesis, Characterization, and Applications of Few Layered Boron Carbonitride, Boron Nitride, and Molybdenum Disulfide Nanosheets
指導教授:林宗吾
指導教授(外文):Lin, Tsung-Wu
口試委員:賴英煌蘇清源林宗吾
口試委員(外文):Lai, Ying-HuangSu, Ching-YuanLin, Tsung-Wu
口試日期:2012-10-22
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:82
中文關鍵詞:石墨烯氮化硼二硫化鉬奈米薄片取代反應場效電晶體
外文關鍵詞:grapheneboron nitridemolybdenum disulfidenanosheetssubstitution reactionfield effect transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1085
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
在2004 年, Prof. Andre Geim 和Dr. Konstantin Novoselov 等人利用簡單的力學剝離法,獲得單層石墨的結構---亦即所謂的石墨烯,並發現石墨烯具有優異的電子與力學性質,開啟了各種層狀材料結構的特性與應用的探討。本碩士研究內容為二維奈米材料之合成、鑑定與應用,其工作包含摻雜氧化石墨烯來合成硼氮碳奈米薄片、用水熱法剝離氮化硼塊材形成奈米薄片、以及利用化學氣相沉積法合成大面積單層二硫化鉬。第一章內容主要陳述石墨烯、硼碳氮奈米薄片、氮化硼奈米薄片以及二硫化鉬奈米薄片基本的結構與性質,與目前研究的發展。第二章為本碩士工作的實驗合成方法以及所使用的鑑定儀器。第三章為硼氮碳奈米薄片合成的結果與討論,藉由硼與氮原子對石墨烯中的碳原子進行部分取代,進而摻雜六方氮化硼於石墨烯中。根據X 射線光電子能譜(XPS)的資料,BN 摻雜的濃度會隨著反應溫度的的增加而升高。除此之外,發現在摻雜氮化硼的實驗中,氣態氨氣的使用有助於降低反應溫度。在不同合成溫度下 BCN 樣品的拉曼光譜顯示 I(D)/I(G) 比值與石墨烯中摻雜 BN 的濃度成正比。除此之外,本工作也使用電子能損譜儀鑑定 BCN 樣品中 BN 區塊的空間分布。最後,不同摻雜濃度 BCN 薄膜的 UV 光譜證實 BN 摻雜打開並調控石墨烯的光學能隙;並且討論硼氮碳奈米薄片場效電晶體的電性表現。第四章為氮化硼奈米薄片的合成,實驗中成功藉由水熱反應在氮化硼粉末上修飾 OH 官能團,並藉以震盪得氮化硼奈米薄片,由原子力顯微鏡的結果可看出高度與縱向寬度會隨反應溫度時間的增加而降低;XPS 的結果顯示OH 修飾的濃度,會隨著反應溫度與時間增加而提高,此點並由UV 光譜儀的結果所驗證,隨著OH 修飾濃度的增加,樣品在水溶液中具有較佳的分散性。最後再藉由π-π交互作用力進行氮化硼奈米薄片對苝四甲酸四甲鹽(PTAS)分子的吸脫附,實驗發現氮化硼奈米薄片上OH 官能團修飾濃度的上升會阻礙PTAS 分子的吸附。第五章則討論二硫化鉬的合成,實驗上藉由化學氣相沉積法直接在 SiO2/Si基板上合成出大面積二硫化鉬奈米薄片。此研究係利用還原氧化石墨烯(rGO),苝四甲酸四甲鹽(PTAS)和苝四甲酸二酐(PTCDA)等分子做為晶種來協助薄膜之生長且形成的薄膜包含單層、雙層以及其他少層結構。此研究藉由 XPS 確認MoS2 的計量數及價態等化學組態,並討論單層二硫化鉬在拉曼光譜以及光致光光譜的表現。穿透式電子顯微鏡(TEM) 以及選區電子繞射(SAED)的觀察發現單層二硫化鉬具有六重對稱的六方晶系以及良好的結晶性質。電性量測方面,單層二硫化鉬場效電晶體為典型的 N-type 半導體,其開關電流比為10000。最後,第六章為此碩士工作的結論以及未來工作。
It was since 2004 that Prof. Andre Geim and Dr. Konstantin Novoselov used mechanical exfoliation method to gain monolayered graphite ---graphene. They have found it has significant electronic behavior and mechanical strength, and opened a route to study the optical and electric behaviors and application of few layered inorganic materials. This study focus on the synthesis of BCN nanosheets via chemical decoration of graphene oxide, hydrothermal exfoliations of boron nitride with the aid of hydrogen peroxide, and the synthesis of few layered structure of molybdenum disulfide by CVD process.
In Chapter 1, it is about the basic structure, characteristics and recently progress of graphene, boron carbonitride, boron nitride and molybdenum disulfide nanosheets. In Chapter 2, it is about the experimental sections and investigating instrument.
Chapter 3 is about the synthesis of BCN nanosheets, we have successfully doped GO nanosheets with BN via partial substitution of carbon atoms in graphene by boron and nitrogen atoms. Based on the XPS data, the doping concentration of BN increases with the increasing of the reaction temperature. Furthermore, we found that the use of gaseous ammonia allows the doping of graphene allows the doping of graphene with BN to be carried out at the lower temperature. The Raman spectra of the BCN sample synthesized at the various temperatures showed that I(D)/I(G) ratio is proportional to the doping concentration of BN in graphene. Furthermore, the estimate value of graphene nanocrystallite size decreases with the increase in the degree of doping in graphene. Finally, UV spectra of BCN sample with various doping concentration of BN have verified that the band gap of graphene is opened and dependent on atomic composition in nanosheets. For the electrical measurements, we will fabricate the bottom gated field-effect transistors by using the BN-doped graphene. For the studies of BN domain distribution in graphene, we will characterize the BCN samples by using electron energy loss spectroscopy. It is expected that the difference in current between graphene and BN domain can be observed.
Chapter 4 is the synthesis of BN nanosheets, we have succesfully decorate BN with OH group via hydrothermal reactions with hydrogen peroxide, and sequentially exfoliated via sonication to gain BN nanosheets. Based on the AFM data, lateral size and height of BN nanosheets decreaes with increasing the reaction temperature.UV spectra of BN nanosheets have verified increased solubility with increased OH group . Finally, we use BN nanosheets to absorb perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) molecule with π-π interaction and desorption with KOH. We found that with the increase of OH concentration desorption concentration decreases caused by blocking of OH group.
Chapter 5 is the synthesis of MoS2 layered structure, large-area MoS2 films are directly synthesized on SiO2/Si substrates with chemical vapor deposition. It is noteworthy that the growth of MoS2 is not unique to SiO2 substrates and it is also observed on other insulating substrates such as sapphire. The as-synthesized films are consisted of monolayer, bilayer and other few-layer MoS2. Chemical configurations, including stoichiometry and valence states of MoS2 layers are confirmed with XPS. Raman spectra and PL performance of the monolayer MoS2 are presented. TEM and SAED demonstrate that the monolayer MoS2 exhibits six-fold symmetry hexagonal lattice and high crystallinity. The electric measurement for the bottom-gate transistor shows a N-type semiconductor behavior and the on-off current ratio is approximately 1 x 104. The seeding approach can be further used to grow other transition metal dichalcogenides. Finally, Chapter 6 is the conclusion and future work.

中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
圖目錄 X
表格目錄 XV
第1章 簡介 1
1-1 半導體工業面臨現況 1
1-2 二維奈米材料的起源:石墨烯 2
1-2-1 石墨烯 2
1-2-2 石墨烯的電子態結構 3
1-2-3 石墨烯於電晶體的發展與應用 4
1-2-4 製備石墨烯的方式 6
1-2-5 石墨烯氧化物之化學結構與特性 6
1-2-6 氧化石墨烯的製備與還原方法 7
1-2-7 氧化石墨烯還原方式。 7
1-2-8 本碩士論文主要探討的主題---石墨烯的延伸物硼碳氮奈米薄片、以及相關層狀材料如氮化硼與二硫化鉬等層狀材料的應用。 8
1-3 硼碳氮奈米薄片(BxCyNz nanosheets) 8
1-3-1 硼碳氮奈米薄片的理論計算與預測 10
1-3-2 硼碳氮奈米材料的合成 11
1-3-3 硼碳氮奈米薄片 (BxCyNz nanosheets) 性質與應用 12
1-4 其他類型二維無機奈米材料--氮化硼奈米薄片 (Boron nitride ) 13
1-4-1 氮化硼奈米薄片的合成 13
1-4-2 氮化硼之光學性質---FTIR、Raman光譜與UV 光譜 13
1-4-3 氮化硼進行碳摻雜 14
1-5 其他類型二維無機奈米材料---二硫化鉬奈米薄片 (MoS2 nanosheets) 15
1-5-1 二硫化鉬的結構與電子態結構性質 15
1-5-2 二硫化鉬奈米薄片的合成 17
1-5-3 二硫化鉬的光學性質---拉曼光譜與光致光光譜對層數的相互關係 18
1-5-4 二硫化鉬場效電晶體表現 20
1-5-5 結論 22
1-6 研究目標: 打開graphene能隙並開發其他二維奈米材料 23
第2章 合成與鑑定方式 25
2-1 硼氮碳奈米薄片的合成 25
2-1-1 氧化石墨烯(Graphene Oxide)的合成 25
2-1-2 硼氮碳奈米薄片合成 25
2-2 氮化硼奈米薄片剝離方式及應用 26
2-2-1 染料分子(PTAS) perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) 的製備 27
2-2-2 修飾染料分子於氮化硼奈米薄片之表面 27
2-3 大面積二硫化鉬奈米薄片的合成 28
2-3-1 二硫化鉬奈米薄片合成 28
2-4 鑑定使用儀器 28
2-4-1 原子力顯微鏡 28
2-4-2 拉曼光譜以及光致光光譜 29
2-4-3 XPS X-ray 光電子能譜 30
2-4-4 穿透式電子顯微鏡 30
2-5 電性元件製作 31
第3章 硼氮碳奈米薄片的鑑定 32
3-1 性質鑑定 32
3-1-1 GO奈米薄片以及硼碳氮奈米薄片層數的鑑定。 32
3-1-2 硼氮碳奈米薄片組成鑑定 32
3-1-3 硼氮原子於硼氮碳奈米薄片的分布調查 37
3-2 光學鑑定 39
3-2-1 硼氮碳奈米薄片之缺陷調查---拉曼光譜 39
3-2-2 硼碳氮奈米薄片光學能隙的鑑定 40
3-3 硼氮碳奈米薄片之場效電晶體的性能調查 42
3-4 結論 44
第4章 Boron nitride 奈米薄片結果與鑑定 45
4-1 反應溫度與時間對於六方氮化硼粒徑與寬度的影響。 45
4-2 反應條件對於氮化硼OH官能團濃度的影響---XPS化學組態調查。 46
4-3 氮化硼奈米薄片的應用---染料分子的吸脫附實驗 49
4-4 結論 52
第5章 二硫化鉬(MoS2)奈米層狀結構的製備與鑑定 54
5-1 性質鑑定 54
5-1-1 二硫化鉬表面形貌以及光學影像 54
5-1-2 二硫化鉬奈米薄片之組成鑑定 56
5-1-3 二硫化鉬奈米薄片之結晶性與缺陷調查 57
5-2 二硫化鉬奈米薄片的層數對拉曼光譜與光致光(PL)現象的影響 58
5-3 二硫化鉬奈米薄片之電性調查 60
5-4 二硫化鉬奈米薄膜成長機制討論 61
5-5 結論 64
第6章 結論與未來工作 65
第7章 參考文獻 67
第8章 附錄 72
8-1 Converting Graphene Oxide Monolayers into Boron Carbonitride Nanosheets by Substitutional Doping 72
8-2 Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition 79


[1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666-669.
[2]P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, Applied Physics Letters 2007, 91, 063124-063123.
[3]A. Castellanos-Gomez, N. Agrait, G. Rubio-Bollinger, Applied Physics Letters 2010, 96, 213116-213113.
[4]M. M. Benameur, B. Radisavljevic, J. S. Héron, S. Sahoo, H. Berger, A. Kis, Nanotechnology 2011, 22, 125706.
[5]P. R. Wallace, Physical Review 1947, 71, 622-634.
[6]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197-200.
[7]W. Zhang, C.-T. Lin, K.-K. Liu, T. Tite, C.-Y. Su, C.-H. Chang, Y.-H. Lee, C.-W. Chu, K.-H. Wei, J.-L. Kuo, L.-J. Li, ACS Nano 2011, 5, 7517-7524.
[8]V. Barone, O. Hod, G. E. Scuseria, Nano Letters 2006, 6, 2748-2754.
[9]L. Brey, H. A. Fertig, Physical Review B 2006, 73, 235411.
[10]X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 2008, 319, 1229-1232.
[11]Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820-823.
[12]J. Sławińska, I. Zasada, Z. Klusek, Physical Review B 2010, 81, 155433.
[13]C. R. Dean, A. F. Young, MericI, LeeC, WangL, SorgenfreiS, WatanabeK, TaniguchiT, KimP, K. L. Shepard, HoneJ, Nat Nano 2010, 5, 722-726.
[14]W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. F. Crommie, A. Zettl, Applied Physics Letters 2011, 98, 242105.
[15]X. Tian, J. Xu, X. Wang, The Journal of Physical Chemistry B 2010, 114, 11377-11381.
[16]B. N. Szafranek, D. Schall, M. Otto, D. Neumaier, H. Kurz, Nano Letters 2011, 11, 2640-2643.
[17]X. Wang, J.-B. Xu, W. Xie, J. Du, The Journal of Physical Chemistry C 2011, 115, 7596-7602.
[18]X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, H. Dai, Science 2009, 324, 768-771.
[19]B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J. R. Gong, Nano Letters 2010, 10, 4975-4980.
[20]L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, P. M. Ajayan, Nat Mater 2010, 9, 430-435.
[21]T.-W. Lin, C.-Y. Su, X.-Q. Zhang, W. Zhang, Y.-H. Lee, C.-W. Chu, H.-Y. Lin, M.-T. Chang, F.-R. Chen, L.-J. Li, Small 2012, 8, 1384-1391.
[22]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, Science 2006, 312, 1191-1196.
[23]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312-1314.
[24]C. Hontoria-Lucas, A. J. López-Peinado, J. d. D. López-González, M. L. Rojas-Cervantes, R. M. Martín-Aranda, Carbon 1995, 33, 1585-1592.
[25]G. Eda, M. Chhowalla, Advanced Materials 2010, 22, 2392-2415.
[26]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282-286.
[27]B. C. Brodie, Philosophical Transactions of the Royal Society of London 1859, 149, 249-259.
[28]W. S. Hummers, R. E. Offeman, Journal of the American Chemical Society 1958, 80, 1339-1339.
[29]Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Journal of the American Chemical Society 2008, 130, 5856-5857.
[30]C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, L.-J. Li, Chemistry of Materials 2009, 21, 5674-5680.
[31]A. Y. Liu, R. M. Wentzcovitch, M. L. Cohen, Physical Review B 1989, 39, 1760-1765.
[32]X. Blase, J. C. Charlier, A. De Vita, R. Car, Applied Physics A: Materials Science & Processing 1999, 68, 293-300.
[33]X. Blase, Computational Materials Science 2000, 17, 107-114.
[34]M. S. C. Mazzoni, R. W. Nunes, S. Azevedo, H. Chacham, Physical Review B 2006, 73, 073108.
[35]R. B. Kaner, J. Kouvetakis, C. E. Warble, M. L. Sattler, N. Bartlett, Materials Research Bulletin 1987, 22, 399-404.
[36]J. Kouvetakis, T. Sasaki, C. Shen, R. Hagiwara, M. Lerner, K. M. Krishnan, N. Bartlett, Synthetic Metals 1989, 34, 1-7.
[37]T. Sasaki, M. Akaishi, S. Yamaoka, Y. Fujiki, T. Oikawa, Chemistry of Materials 1993, 5, 695-699.
[38]L. Maya, Journal of the American Ceramic Society 1988, 71, 1104-1107.
[39]M. Kawaguchi, T. Kawashima, Journal of the Chemical Society, Chemical Communications 1993, 1133-1134.
[40]D. Hegemann, R. Riedel, C. Oehr, Thin Solid Films 1999, 339, 154-159.
[41]C. Popov, K. Saito, B. Ivanov, Y. Koga, S. Fujiwara, V. Shanov, Thin Solid Films 1998, 312, 99-105.
[42]D. Kurapov, D. Neuschütz, R. Cremer, T. Pedersen, M. Wuttig, D. Dietrich, G. Marx, J. M. Schneider, Vacuum 2002, 68, 335-339.
[43]E. H. A. Dekempeneer, J. Meneve, S. Kuypers, J. Smeets, Thin Solid Films 1996, 281–282, 331-333.
[44]M. C. Polo, E. Martínez, J. Esteve, J. L. Andújar, Diamond and Related Materials 1998, 7, 376-379.
[45]J. Loeffler, I. Konyashin, J. Bill, H. Uhlig, F. Aldinger, Diamond and Related Materials 1997, 6, 608-611.
[46]M. Mieno, T. Satoh, Journal of Materials Science 2001, 36, 3925-3931.
[47]T. Thamm, K. U. Körner, W. Bohne, E. Strub, J. Röhrich, S. Stöckel, G. Marx, Applied Surface Science 2005, 252, 223-226.
[48]V. Linss, I. Hermann, N. Schwarzer, U. Kreissig, F. Richter, Surface and Coatings Technology 2003, 163–164, 220-226.
[49]R. Gago, I. Jiménez, Garcı, amp, x, I. a, J. M. Albella, Vacuum 2002, 64, 199-204.
[50]A. Perrone, A. P. Caricato, A. Luches, M. Dinescu, C. Ghica, V. Sandu, A. Andrei, Applied Surface Science 1998, 133, 239-242.
[51]A. B. Preobrajenski, A. S. Vinogradov, N. Mårtensson, Surface Science 2005, 582, 21-30.
[52]K. Raidongia, A. Nag, K. P. S. S. Hembram, U. V. Waghmare, R. Datta, C. N. R. Rao, Chemistry – A European Journal 2010, 16, 149-157.
[53]D. Pacile, J. C. Meyer, C. O. Girit, A. Zettl, Applied Physics Letters 2008, 92, 133107-133103.
[54]C. Y. Zhi, Y. Bando, T. Terao, C. C. Tang, H. Kuwahara, D. Golberg, Chemistry – An Asian Journal 2009, 4, 1536-1540.
[55]W.-Q. Han, L. Wu, Y. Zhu, K. Watanabe, T. Taniguchi, Applied Physics Letters 2008, 93, 223103-223103.
[56]L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, P. M. Ajayan, Nano Letters 2010, 10, 3209-3215.
[57]Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu, K. Zhang, H. Li, Z.-Y. Juang, M. S. Dresselhaus, L.-J. Li, J. Kong, Nano Letters 2010, 10, 4134-4139.
[58]A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare, C. N. R. Rao, ACS Nano 2010, 4, 1539-1544.
[59]Y. Lin, T. V. Williams, J. W. Connell, The Journal of Physical Chemistry Letters 2009, 1, 277-283.
[60]W. Wang, Y. Bando, C. Zhi, W. Fu, E. Wang, D. Golberg, Journal of the American Chemical Society 2008, 130, 8144-8145.
[61]X. Wei, M.-S. Wang, Y. Bando, D. Golberg, ACS Nano 2011, 5, 2916-2922.
[62]K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Physical Review Letters 2010, 105, 136805.
[63]P. Afanasiev, Comptes Rendus Chimie 2008, 11, 159-182.
[64]A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Letters 2010, 10, 1271-1275.
[65]RadisavljevicB, RadenovicA, BrivioJ, GiacomettiV, KisA, Nat Nano 2011, 6, 147-150.
[66]H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, Advanced Functional Materials 2012, 22, 1385-1390.
[67]K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, L.-J. Li, Nano Letters 2012, 12, 1538-1544.
[68]G. Du, Z. Guo, S. Wang, R. Zeng, Z. Chen, H. Liu, Chemical Communications 2010, 46, 1106-1108.
[69]X. L. Li, Y. D. Li, Chemistry – A European Journal 2003, 9, 2726-2731.
[70]C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, ACS Nano 2010, 4, 2695-2700.
[71]G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Letters 2011, 11, 5111-5116.
[72]S. Ghatak, A. N. Pal, A. Ghosh, ACS Nano 2011, 5, 7707-7712.
[73]Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 2011, 6, 74-80.
[74]D. J. Late, B. Liu, R. H. S. S. Matte, V. P. Dravid, C. N. R. Rao, ACS Nano 2012.
[75]Y. Yoon, K. Ganapathi, S. Salahuddin, Nano Letters 2011, 11, 3768-3773.
[76]H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, S. Im, Nano Letters 2012.
[77]D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Letters 2009, 9, 1752-1758.
[78]C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Letters 2007, 7, 3499-3503.
[79]E. S. Snow, P. M. Campbell, M. G. Ancona, J. P. Novak, Applied Physics Letters 2005, 86, 033105-033103.
[80]W. S. Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy, S. D. Chae, P. Zhao, A. Konar, H. Xing, A. Seabaugh, D. Jena, Applied Physics Letters 2012, 101, 013107-013104.
[81]H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, A. Javey, Nano Letters 2012, 12, 3788-3792.
[82]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558-1565.
[83]洪連輝‧劉立基‧魏榮君, 高立出版社 2011.
[84]林智仁, 羅聖全, 工業材料雜誌 2003, 201, 90-98.
[85]許瓊姿, 蔡增光, 潘扶民, 毫微米通訊 2002, 9, 22-31.
[86]S. Y. Kim, J. Park, H. C. Choi, J. P. Ahn, J. Q. Hou, H. S. Kang, Journal of the American Chemical Society 2007, 129, 1705-1716.
[87]X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, H. Dai, Journal of the American Chemical Society 2009, 131, 15939-15944.
[88]G. Gou, B. Pan, L. Shi, ACS Nano 2010, 4, 1313-1320.
[89]B. Krauss, T. Lohmann, D. H. Chae, M. Haluska, K. von Klitzing, J. H. Smet, Physical Review B 2009, 79, 165428.
[90]J. Tauc, R. Grigorovici, A. Vancu, physica status solidi (b) 1966, 15, 627-637.
[91]D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat Nano 2008, 3, 101-105.
[92]D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.-H. Yoon, Langmuir 2010, 26, 16096-16102.
[93]C. Altavilla, M. Sarno, P. Ciambelli, Chemistry of Materials 2011, 23, 3879-3885.
[94]K. C. Wong, X. Lu, J. Cotter, D. T. Eadie, P. C. Wong, K. A. R. Mitchell, Wear 2008, 264, 526-534.
[95]C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, ACS Nano 2010, 4, 2695.
[96]K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 10451-10453.
[97]A. Ayari, E. Cobas, O. Ogundadegbe, M. S. Fuhrer, Journal of Applied Physics 2007, 101, 014507-014505.
[98]L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, Y. Zhang, Journal of the American Chemical Society 2011, 133, 18522-18525.
[99]Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Advanced Materials 2012, 24, 2320-2325.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊