(3.215.77.193) 您好!臺灣時間:2021/04/17 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉致君
研究生(外文):LIU,ZHI-JUN
論文名稱:環境水樣中生物農藥阿巴汀的質譜檢測
論文名稱(外文):Analysis of Bio-pesticides Abamectin in Environmental Water Sample By Mass Spectrometry
指導教授:劉建忠劉建忠引用關係
指導教授(外文):Liou, Chien-Chung
口試委員:鄧宗禹趙奕姼
口試委員(外文):Walter DenIto Chao
口試日期:2013-06-13
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:80
中文關鍵詞:阿巴汀分散式液液微萃取法質譜儀萃取劑分散劑
外文關鍵詞:abamectindispersive liquid-liquid microextraction methodMALDI-TOF MSextraction solventdispersive solvent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:632
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
阿巴汀為蟲害防治藥劑主要成分之一,常用於柑桔、漿果與十字花科葉菜等農作物的蟎與線蟲防治。本論文以分散式液液微萃取法,結合基質輔助雷射脫附游離飛行質譜儀,對阿巴汀進行鑑定分析,具有快速、簡單、高靈敏度與高選擇性等優點。
  實驗中利用分散式液液微萃取技術,探討萃取劑種類、萃取劑體積、分散劑種類、分散劑體積、pH值、離心時間等因素對於萃取效率的影響,在最佳化的實驗條件下,所測得的分析物檢量線,濃度線性範圍在0.01 μM 至1 μM之間,相關係數(R2)為 0.9953,偵測極限可以達到0.72 ng/mL。
  將此分散式液液微萃取法,應用於取自苗栗縣西湖溪上游,大片柑桔園附近的溪水樣品,進行阿巴汀化合物的質譜檢測,經分析後發現該溪水中檢測不出任何阿巴汀的藥物成分。另外,以阿巴汀的標準溶液,添加於該溪水樣品中,經由濾紙與0.45 μm的濾膜過濾後,所測得的阿巴汀化合物檢量線,濃度線性範圍在0.01 μM 至1 μM之間,相關係數(R2)為0.9981、偵測極限為1.92 ng/mL。

Abamectin is the main ingredients of pest control pharmaceutical, commonly used in citrus fruits, berries, cruciferous vegetables and other crops to prevention and cure mites and nematodes. This study use distributed liquid-liquid microextraction combined with MALDI-TOF MS to identify the abamectin compound. It has the advantages of quick, simple, high sensitivity and high selectivity.
For the distributed liquid-liquid microextraction there are several important experimental conditions, such as the kind and the volume of extraction and dispersive solvents, pH value and centrifugation time, were investigated. Under the optimal conditions, our experiment results showed a linear calibration curve in the concentration ranged from 0.01 μM to 1 μM with a correlative coefficient (R2) 0.9953 and the limit of detection 0.72 ng/mL.
This analysis method is applied to the water sample obtained from Xihu Creek of Miaoli County, that has large tracts of citrus orchards on upstream. Our experiment results showed, it can’t detect any abamectin in the water sample. In addition, abamectin standard solution is added to the sample and filtered by a filter paper and a 0.45μm membrane. The analytical results showed a linear calibration curve in the concentration ranged from 0.01 μM to 1 μM with a correlative coefficient (R2) 0.9981 and the limit of detection 1.92 ng/mL.

摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅵ
表目錄 Ⅷ
壹、前言 1
1.1 研究緣起 1
1.2 研究動機 4
1.3 研究目的 4
貳、文獻回顧 6
2.1 阿巴汀的檢測分析 6
2.2 各種萃取方法的優缺點 8
2.2.1 固相萃取法 9
2.2.2 固相微萃取法 9
2.2.3 單滴微萃取法 10
2.2.4 超臨界流體萃取法 11
2.2.5 基質固相分散萃取法 11
2.2.6 分散式液液微萃取法 12
參、實驗方法、藥品及儀器設備 15
3.1 實驗方法 15
3.1.1 分散式液液微萃取法最佳實驗條件 15
3.1.2 基質輔助雷射脫附游離飛行時間質譜儀最佳操作條件 15
3.1.3 樣品溶液的配製 16
3.1.4 分散式液液微萃取參數 17
3.1.5 質譜儀操作條件 18
3.2 化學藥品 21
3.3 基質輔助雷射脫附游離飛行時間質譜儀 22
3.3.1 基質輔助雷射脫附游離法的發展史 22
3.3.2 基質的特性與功能 24
3.3.3 基質輔助雷射脫附游離法樣品製備方式 28
3.3.4 基質輔助雷射脫附游離法離子形成機制 29
3.3.5 飛行時間質量分析儀的原理與構造 34
3.3.6 基質輔助雷射脫附游離飛行時間質譜儀的優點 37
3.4 儀器設備 40
肆、結果與討論 41
4.1 萃取效率最佳化 41
4.1.1 萃取劑 41
4.1.2分散劑 47
4.1.3 樣品溶液的pH值 52
4.1.4 離心時間 54
4.1.5分散式液液微萃取法的最佳實驗條件 56
4.2 質譜樣品的製備 58
4.2.1 基質選擇 58
4.2.2 添加鈉離子溶液 62
4.2.3 用seed-layer方式結晶製備樣品 63
4.3 標準溶液的檢量線與偵測極限 65
4.4 環境水樣品的質譜檢測 67
4.4.1 樣品的前處理 67
4.4.2 質譜檢測 69
4.4.3 環境水樣品的檢量線與偵測極限 71
伍、結論 72
陸、參考文獻 73

1. Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, Kong YL, Monaghan RL, Olson G, Putter I, Tunac JB, Wallick H, Stapley EO, Oiwa R, Omura S, “Avermectins, new family of potent anthelmintic agents: producing organism and fermentation” Antimicrob Agents Chemother. 1979, 15, 361-367.
2. Campbell WC, Fisher MH, Stapley EO, Albers-Schönberg G, Jacob TA, “Ivermectin: a potent new antiparasitic agent” Science. 1983, 221, 823-828.
3. Terence RR, David HH, “Metabolic Pathways of Agrochemicals: Part 2: Insecticides and Fungicides ” The Royal Society of Chemistry. 1998, 79-103.
4. Burts EC, “SN 72129 and Avermectin B1, Two New Pesticides for Control of Pear Psylla, Psylla pyricola (Homoptera: Psyllidae).” Journal of Economic Entomology. 1985, 78, 1327-1330.
5. Lasota JA, Dybas RA, “Abamectin as a pesticide for agricultural use. ” Acta Leiden. 1990, 59, 217-225.
6. Qiao K, Liu X, Wang H, Xia X, Ji X, Wang K, “Effect of abamectin on root-knot nematodes and tomato yield.” Pest Manag Sci. 2012, 68, 853-857.
7. Mitchell WC, Saul SH, “Current control methods for the Mediterranean fruit fly, Ceratitis capitata, and their application in the USA.” Review of Agricultural Entomology. 1990, 78, 923-930.
8. Wright JE, “Biological Activity of Avermectin B1 Against the Boll Weevil (Coleoptera: Curculionidae). ” Journal of Economic Entomology. 1984, 77, 1029-1032.
9. Molento MB, Nielsen MK, Kaplan RM, “Resistance to avermectin/milbemycin anthelmintics in equine cyathostomins - current situation. ” Vet Parasitol. 2012, 185, 16-24.
10. Campbell WC, “History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents.” Curr Pharm Biotechnol. 2012, 13, 853-865.
11.Borko C, Marc I, Pogacnik M, Erzen NK, Flajs VC, “Tolerance of therapeutic doses of abamectin and doramectin in Istrian Pramenka sheep.” J Vet Med A Physiol Pathol Clin Med. 2005, 52, 525-528.
12. Bowen JM, Vitayavirasak B, “Contractile activity and motility responses of the dog heartworm Dirofilaria immitis to classical anthelmintics and other compounds.” Vet Parasitol. 2005, 134, 183-188.
13. Forbes AB, “A review of regional and temporal use of avermectins in cattle and horses worldwide.” Vet Parasitol. 1993, 48, 19-28.
14. Fisher MH, “Recent advances in avermectin research Pure &App.” Chern. 1990, 62, 1231-1240.
15. Arena JP, Liu KK, Paress PS, Cully DF, “Avermectin-sensitive chloride currents induced by Caenorhabditis elegans RNA in Xenopus oocytes.” Mol. Pharmacol. 1991, 40, 368-374.
16. Arena JP, Liu KK, Paress PS, Schaeffer JM, Cully DF, “Expression of a glutamate activated chloride current in Xenopus oocytes with Caenorhabditis elegans RNA: evidence for modulation by avermectin.” Mol. Brain Res. 1992, 15, 339-348.
17. Lasota JA, Dybas RA, “Avermectins, a novel class of compounds: implications for use in arthropod pest control.” Annu. Rev. Entomol. 1991, 36, 91-117.
18. Schaeffer JM, Haines HW, “Avermectin binding in Caenorhabditis elegans: a two-state model for the avermectin binding site. Biochem. Pharmacol.” 1989, 38, 2329-2338.
19. 89.5.30 行政院農業委員會 89 農糧字第 890020475 號公告.
20. Hsu DZ, Hsu CH, Huang BM, Liu MY, “Abamectin effects on aspartate aminotransferase and nitric oxide in rats.” Toxicol. 2001, 165, 189-193.
21. Löwenstein M, Loupal G, Baumgartner W, Kutzer E, “Histology of the skin and determination of blood and serum parameters during the recovery phase of sarcoptic manage in cattle after avermectin(Ivomec)treatment.” Appl. Parasitol. 1996, 37, 77-86.
22. Pesticide Ecotoxicity Database Of Environmental Fate and Effects Division, U.S.EPA
23. Novelli A, Vieira BH, Cordeiro D, Cappelini LT, Vieira EM, “Espíndola ELLethal effects of abamectin on the aquatic organisms Daphnia similis, Chironomus xanthus and Danio rerio.” Chemosphere. 2012, 86, 36-40.
24. Mohammed AA, “Effect of an Insecticide Abamectin on Some Biochemical Characteristics of Tilapia Fish (Oreochromis Niloticus).” American Journal of Agricultural and Biological Sciences. 2011, 6, 62-68.
25. Cobin JA, Johnson NA, “Liquid chromatographic method for rapid determination of total avermectin B1 and 8,9-Z-avermectin B1 residues in apples.” J AOAC Int. 1995, 78, 419-423.
26. Li J, Qian C, “Determination of avermectin B1 in biological samples by immunoaffinity column cleanup and liquid chromatography with UV detection.” J AOAC Int. 1996, 79, 1062-1067.
27. Diserens H, Henzelin M, “Determination of abamectin residues in fruits and vegetables by high-performance liquid chromatography.” J Chromatogr A. 1999, 833, 13-18.
28. Yoshii K, Kaihara A, Tsumura Y, Ishimitsu S, Tonogai Y, “Liquid chromatographic determination of emamectin, milbemectin, ivermectin and abamectin in crops and confirmation by liquid chromatography-mass spectrometry.” J Chromatogr A. 2000, 896, 75-85.
29. Valenzuela AI, Popa DS, Redondo MJ, Mañes J, “Comparison of various liquid chromatographic methods for the analysis of avermectin residues in citrus fruits.” J Chromatogr A. 2001, 918, 59-65.
30.Danaher M, O'Keeffe M, Glennon JD, “Extraction and isolation of avermectins and milbemycins from liver samples using unmodified supercritical CO2 with in-line trapping on basic alumina.” J Chromatogr B Biomed Sci Appl. 2001, 761, 115-123.
31.St Onge LM, Dolar E, Anglim MA, Least CJ Jr, “Improved determination of phenobarbital, primidone, and phenytoin by use of a preparative instrument forextraction, followed by gas chromatography.” Clin Chem. 1979, 25, 1373-1376.
33. Arthur CL, Pawliszyn J, “Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers.” Anal. Chem. 1990, 62, 2145–2148.
33. Prosen H, Lucija ZK, “Solid-phase microextraction.” TrAC trends in analytical chemistry. 1999, 18, 272-281.
34. Liu H, Dasgupta PK, “Analytical chemistry in a drop solvent extraction in a microdrop.” Anal. Chem. 1996, 68, 1817-1821.
35. Liu W, Lee HK, “Continuous-flow microextraction exceeding 1000-fold concentration of dilute analytes.” Anal. Chem. 2000, 72, 4462-4467.
36. Teja AS, and Eckert CA, “Commentary on supercritical fluids: research and applications.” Ind. Eng. Chem. Res. 2000, 39 , 4442–4444.
37. McHugh MA, Krukonics VJ, “Supercritical Fluids Extractions: Principles and Practice, 2nd ed.” 1994, Butterworths-Heinemann, Boston.
38. Dohrn R, Brunner G, “High-pressure fluid-phase equilibria: experimental methods and systems investigated (1988 ~ 1993),” Fluid Phase Equilibria. 1995, 106, 213–282.
39. Barker SA, Long AR, Short CR, “Isolation of drug residues from tissues by solid phase dispersion.” J Chromatogr. 1989, 475, 353-361.
40. Rezaee M, Assadi Y, Milani Hosseini M, Aghaee E, Ahmadi F, Berijani S, “Determination of organic compounds in water using dispersive liquid–liquid microextraction.” J.of Chrom. A 2006, 1116, 1-9.
41. Posthumus MA, Kistemker PG, Meuzelaar HLC, “Laser Desorption Mass Spectrometry of Polar Nonvolatile Bio-Organic Molecules.” Anal. Chem. 1978, 50, 985-991.
42. Karas M, Bachmann D, Hillenkamp F, “Influence of the Wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules.” Anal. Chem. 1985, 57, 2935-2939.
43. Tanaka K, Ido Y, Akita S, Yoshida Y, Yoshida T, “Detection of High Mass Molecules by Laser Desorption Time-of-Flight Mass Spectrometry.” Second Japan-China Joint Symposium on Mass Spectrometry. 1987, 185-188.
44. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, “Protein and Polymer Analyses up to m/z 100000 by Laser Ionization Time-of-Flight Mass 95 Spectrometry.” Rapid Commun. Mass Sp. 1988, 2, 151-153.
45. Karas M, Hillenkamp F, “Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons.” Anal. Chem. 1988, 20, 2299-2301.
46. Caldwell KL, Murray KK, “Mid-infrared matrix assisted laser desorption ionization with a water/glycerol matrix.” Appl. Surf. Sci. 1998, 127, 242-247.
47. Fitzgerald M, Parr G, Smith L, “Basic matrices for the matrix-assisted laser desorption/ionization mass spectrometry of proteins and oligonucleotides.” Anal. Chem. 1993, 22, 3204-3211.
48. Juhasz P, Costello CE, Biemann K, “Matrix-Assisted Laser Desorption Ionization Mass Spectrometry with 2-(4-Hydroxyphenylazo)benzoic Acid Matrix.” J. Am. Sac. Mass Spectrom. 1993, 4, 399-409.
49. Ehring H, Karas M, Hillenkamp F, “Role of Photoionization and Photochemistry in Ionization Processes of Organic-Molecules and Relevance for Matrix-Assisted Laser Desorption Ionization Mass-Spectrometry.” Org. Mass Spectrom. 1992, 27, 472-480.
50. Bahr U, Karas M, Hillenkamp F, Fresenius J, “Analysis of Biopolymers by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry.” Anal. Chem. 1994, 348, 783-791
51. Overberg A, Karas M, Bahr U, Kaufmann R, Hillenkamp F, “Matrix-Assisted Infared-Laser(2.94 μm) Desorption/Ionization Mass Spectrometry of Large Biomolecules.” Rapid Commun. Mass Sp. 1990, 4, 293-296.
52. Kussmann M, Nordhoff E, Rahbek-Nielsen H, Haebel S, “Martin-Rossel-Larsen; Jakobsen, L.; Gobom, J., Matrix-Assisted Laser Desoption/Ionization Mass Spectrometry Sample Prepation Techniques Designed for Various Peptide and Protein Analytes.” J. Mass Spectrom. 1997, 32, 593-601.
53. Zenobi R, Knochenmuss R, “Ion Formation in MALDI Mass Spectrometry.” Mass Spectrom. Rev. 1998, 17, 337-366.
54. Knochenmuss R, “Ion formation mechanism in UV-MALDI.” Analyst. 2006, 131, 966-986
55. Sunner J, “Ionizationin Liquid Secondary Ion Mass Spectrometry (LSIMS).” Org. Mass Spectrom. 1993, 28, 805-823.
56. Kosaka T, Kinoshita T, Takayama M, “Ion formation and fragmentation of sinapinic acid in electron ionization, liquid secondary ion and matrix-assisted laser desorption/ionization mass spectrometry.” Rapid Commun. Mass Sp. 1996, 10, 405-408.
57. Harrison AG, “The Gas-Phase Basicities and Proton Affinities of Amino Acids and Peptides.” Mass Spectrometry Rev. 1997, 16, 201-217.
58. Breemen RBV, Snow M, Cotter RJ, “Time-Resolved Laser Desorption Mass Spectrometry. I. Desprption of Preformed ions.” Int. J. Mass Spectrom. Ion Phys. 1983, 49, 35-50.
59. Osteriaa G, Russob S, “The Time of Flight electronics for the PAMELA experiment in space.” Nucl. Instrum. Methods Phys. Res. A 2008, 589, 465-471.
60. Schmida RP, Weickhardt C, “Designing reflectron time-of-flight mass
spectrometers with and without grids: a direct comparison.” Int. J. Mass Spectrom. 2001, 206, 181-190.
61. Guan B, Cole R, “Differentiation of both linkage position and anomeric configuration in underivatized glucopyranosyl disaccharides by anion attachment with post-source decay in matrix-assisted laser desorption/ionization linear-field reflectron time-of-flight mass spectrometry.” Rapid Commun. Mass Sp. 2007, 21, 3165-3168.
62. Woods AS, Little DP, Cornish T, Cotter RJ, Little DP, “Peptide analysis to the attomole level using a curved-field reflectron MALDI-TOF mass spectrometer.” Journal of the Mass Spectrom. Soci. Japan 1998, 46, 91-96
63. Piyadasa C, Håkansson P, Ariyaratne T, “A high resolving power multiple reflection matrix-assisted laser desorption/ionization time-of-flight mass spectrometer.” Rapid Commun. Mass Spectrom. 1999, 13, 620-624.
64. Behrens A, Maie N, Knicker H, Kogel-Knabner I, “MALDI-TOF mass spectrometry and PSD fragmentation as means for the analysis of condensed tannins in plant leaves and needles.” Phytochem. 2003, 62, 1159-1170.
65. Wiley WC, McLaren IH, “Time-of-Flight Mass Spectrometer with Improved Resolution.” Rev. Sci.c Ins. 1955, 26, 1150-1157.
66. Yanes O, Nazabal A, Wenzel R, Zenobi R, Aviles F, “Detection of noncovalent complexes in biological samples by intensity fading and high-mass detection MALDI-TOF mass spectrometry.” J Proteome Res. 2006, 10, 2711-2719.
67. Wang X, Fu L, Wei G, Hu J, Zhao X, Liu X, Li Y, “Determination of four aromatic amines in water samples using dispersive liquid-liquid microextraction combined with HPLC.” J Sep. Sci. 2008, 31, 2932-2938.
68. Farajzadeh M, Seyedi S, Shalamzari M, Bamorowat M, “Dispersive liquid-liquid microextraction using extraction solvent lighter than water.” J Sep. Sci. 2009, 32, 3191-3200.
69.張 衛,虞雲龍,譚成俠,李少南,吳加倫,樊德方. “阿維菌素水解動力學的研究。” 農業環境科學學報歐. 2004, 23, 174—176
70.Liu y, Zhao W, Gao H, Zaou Z, “Determation of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples.” J Chromatogr A. 2009, 6, 885-891
71. McCombie G, Knochenmuss R, “Small-molecule MALDI using the matrix suppression effect to reduce or eliminate matrix background interferences.” Anal. Chem. 2004, 76 , 4990-4997.
72. Chen Y, Tsai M, “Using surfactants to enhance the analyte signals in activated carbon, surface-assisted laser desorption/ionization (SALDI) mass spectrometry.” J Mass Spectrom. 2000, 35, 1278-1284.
73. Cuiffi J, Hayes D, Fonash S, Brown K, Jones A, “Desorption-ionization mass spectrometry using deposited nanostructured silicon films.” Anal. Chem. 2001, 73 , 1292-1295.
74. Onnerfjord P, Ekström S, Bergquist J, Nilsson J, Laurell T, Marko-Varga G, “Homogeneous sample preparation for automated high throughput analysis with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.” Rapid Commun. Mass Spectrom. 1999, 13, 315-322.
75.水質檢測方法總則(NIEA W102.51C).
76.河川、湖泊及水庫水質採樣通則(NIEA W104.51C).
77.楊汶凌,以分散式液液微萃取結合基質輔助雷射脫附游離飛行時間質譜法應用於強心配醣體化合物的偵測.東海大學碩士論文2009.
78.籃品渝,以分散式液液微萃取技術結合基質輔助雷射脫附游離飛行時間質譜儀分析毛花苷化合物.東海大學碩士論文 2009.
79.陶際唐,分散式液液微萃取強心配醣體化合物.東海大學化學碩士論文 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔