跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 13:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭滸勤
研究生(外文):Jeng, Hu-Cin
論文名稱:介觀二氧化矽薄膜中製備高密度金奈米粒子應用於表面增強拉曼光譜
論文名稱(外文):Surface Enhanced Raman Scattering Substrates Formed by Ultrahigh Number Density Gold Nanoparticles Confined in Mesostructured Silica Films
指導教授:賴英煌
指導教授(外文):Ying-Huang Lai
口試委員:鄭有舜林宗吾
口試委員(外文):U-Ser JengTsung-Wu Lin
口試日期:2013-07-25
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:82
中文關鍵詞:拉曼表面增顯拉曼中孔材料薄膜
外文關鍵詞:RamanMesostructureSERSGoldthin films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究選用C18TAB為界面活性劑,成長具介觀結構的二氧化矽薄膜,並運用光催化法於介觀結構中擔載金奈米粒子,創造高密度的熱點,最後將此功能性材料應用於4-MBA的SERS量測。
由小角度X-ray散射及穿透式電子顯微鏡的結果,顯示此二氧化矽薄膜為二維六角晶形結構 ( 2D hexagonal );利用紫外-可見光( UV-vis)吸收光譜量測,觀察於545 nm表面電漿共振吸收峰的增長,確認金奈米粒子形成;透過熱重分析 ( TGA ) 數據估算金奈米粒子於光催化薄膜PMS中重量比為74.4%; 穿透式電子顯微鏡影像顯示金奈米粒子緊密堆積於薄膜通道中,且均勻分佈於薄膜內。
以4-MBA當作SERS的標定分子,當界面活性劑為短碳鏈(C16TAB)時,可偵測之4-MBA濃度達1.0×10-6 M,增顯係數為6.9 ×104;若改變界面活性劑碳鏈長度(C18TAB),最低偵測極限則可達1.0 ×10-8 M,增顯係數為2.7 ×107。本研究證實,隨著界面活性劑碳鏈增長,有效提升SERS的偵測靈敏度。

In this study, we demonstrated that gold nanoparticles (NPs) can be directed and reduced along the pre-embedded polyoxometalates (photocatalytic agents) on the channel surfaces of a cationic-surfactant-silica template, thereby, forming highly interconnected metal NPs of uniform particle size in the 2D hexagonally packed SiO2 channels. In addition, we will study hot-spot effect at the junctions between NPs, give rise to large enhancement that enable surface enhanced Raman scattering (SERS) detection at small amount target molecular (4-MBA).
The results of small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) indicate that the mesostructure of as-synthesized silica thin films are 2D-hexagonal. The 545 nm surface plasmon resonance increasing during photocatalytical reduction confirms the formation of gold NPs. The weight ratio estimated from thermogravimetric analysis (TGA) is 74.4% with gold NPs. TEM images show the gold NPs which closely packing and uniformly in mesostructure.
In SERS measurement, we used hybrid films to enhance the intensity of 4-MBA, when the surfactant with short carbon chain ( C16TAB ), the 4-MBA detect concentrations could up to 1.0×10-6 M. The enhancement factor is 6.9×104. We selected longer carbon chain surfactant (C18TAB) improved SERE effect. The 4-MBA detect concentrations could up to 1.0×10-8 M. The enhancement factor is 2.7×107.
This study demonstrated that gold nanoparticles size increases with the surfactant carbon chain increase, and effectively enhance the SERS detection signals.

第一章 緒論 5
1-1 拉曼光譜的演進與應用 5
1-2 拉曼光譜( Raman spectroscopy )原理 6
1-3 表面增顯拉曼光譜 (Surface Enhanced Raman Spectroscopy, SERS) 6
1-4 文獻回顧 11
1-5 中孔材料 19
1-6 動機 23
第二章 實驗步驟 25
2-1 化學藥品 25
2-2 樣品的製備 26
2-2-1 中孔道二氧化矽薄膜製備 27
2-2-2 含多氧金屬酸化合物混合薄膜製備 28
2-2-3 製備奈米金屬複合薄膜(C18PMS-GNP) 29
第三章 實驗儀器與原理 31
3-1 紫外-可見光吸收光譜儀( UV-Vis Spectroscopy) 31
3-2 穿透式電子顯微鏡 ( Transmission Electron Microscopy, TEM ) 33
3-3 熱重分析儀 ( Thermogravimetric Analysis, TGA ) 35
3-4 X光繞射光譜儀 ( X-ray Diffraction spectroscopy, XRD ) 36
3-5 X光小角度散射儀 ( Small Angle X-ray scattering, SAXS ) 37
3-6 拉曼光譜 ( Raman spectra ) 39
第四章 結果與討論 42
4-1 C18PMS混合薄膜光學性質鑑定 42
4-2 C18PMS 之X-ray Diffraction結構鑑定 46_Toc364067271
4-3 熱重分析 51
4-4 穿透式電子顯微鏡( TEM )量測 55
4-5 PMS-GNP複合材料應用於表面增顯拉曼光譜( SERS ) 59
第五章 結論 69
第六章 參考文獻 71
第七章 附錄 74

(1)Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chemical Reviews 1999, 99, 2957.
(2)Baena, J. R.; Lendl, B. Current Opinion in Chemical Biology 2004, 8, 534.
(3)Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chemical Physics Letters 1974, 26, 163.
(4)Jeanmaire, D. L.; Van Duyne, R. P. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84, 1.
(5)Katrin, K.; Harald, K.; Irving, I.; Ramachandra, R. D.; Michael, S. F. Journal of Physics: Condensed Matter 2002, 14, R597.
(6)Aroca, R.; Rodriguez-Llorente, S. Journal of Molecular Structure 1997, 408–409, 17.
(7)Campion, A.; Kambhampati, P. Chemical Society Reviews 1998, 27, 241.
(8)Ko, H.; Singamaneni, S.; Tsukruk, V. V. Small 2008, 4, 1576.
(9)Krenn, J. R.; Dereux, A.; Weeber, J. C.; Bourillot, E.; Lacroute, Y.; Goudonnet, J. P.; Schider, G.; Gotschy, W.; Leitner, A.; Aussenegg, F. R.; Girard, C. Physical Review Letters 1999, 82, 2590.
(10)Yang, Y.; Shi, J.; Tanaka, T.; Nogami, M. Langmuir 2007, 23, 12042.
(11)Genov, D. A.; Sarychev, A. K.; Shalaev, V. M.; Wei, A. Nano Letters 2003, 4, 153.
(12)Schedin, F.; Lidorikis, E.; Lombardo, A.; Kravets, V. G.; Geim, A. K.; Grigorenko, A. N.; Novoselov, K. S.; Ferrari, A. C. ACS Nano 2010, 4, 5617.
(13)Kneipp, K.; Wang, Y.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Physical Review Letters 1996, 76, 2444.
(14)Nie, S.; Emory, S. R. Science 1997, 275, 1102.
(15)Jana, N. R.; Pal, T. Advanced Materials 2007, 19, 1761.
(16)Amezcua-Correa, A.; Yang, J.; Finlayson, C. E.; Peacock, A. C.; Hayes, J. R.; Sazio, P. J. A.; Baumberg, J. J.; Howdle, S. M. Advanced Functional Materials 2007, 17, 2024.
(17)Ozin, G. A. Accounts of Chemical Research 1997, 30, 17.
(18)Mal, N. K.; Fujiwara, M.; Tanaka, Y. Nature 2003, 421, 350.
(19)Stein, A. Advanced Materials 2003, 15, 763.
(20)Davis, M. E. Nature 2002, 417, 813.
(21)Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W. Journal of the American Chemical Society 1992, 114, 10834.
(22)Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
(23)Fan, J.; Yu, C.; Gao, F.; Lei, J.; Tian, B.; Wang, L.; Luo, Q.; Tu, B.; Zhou, W.; Zhao, D. Angewandte Chemie 2003, 115, 3254.
(24)Vinu, A.; Murugesan, V.; Hartmann, M. Chemistry of Materials 2003, 15, 1385.
(25)Lin, H. P.; Tang, C. Y.; Lin, C. Y. J. Chin. Chem. Soc. 2002, 49, 981.
(26)Alfredsson, V.; Anderson, M. W. Chemistry of Materials 1996, 8, 1141.
(27)Bhaumik, A.; Inagaki, S. Journal of the American Chemical Society 2001, 123, 691.
(28)Zhang, Z.; Han, Y.; Zhu, L.; Wang, R.; Yu, Y.; Qiu, S.; Zhao, D.; Xiao, F.-S. Angewandte Chemie International Edition 2001, 40, 1258.
(29)Yamauchi, Y.; Suzuki, N.; Radhakrishnan, L.; Wang, L. Chem. Rec. 2009, 9, 321.
(30)Walcarius, A.; Etienne, M.; Lebeau, B. Chemistry of Materials 2003, 15, 2161.
(31)Yokoi, T.; Yoshitake, H.; Tatsumi, T. J. Mater. Chem. 2004, 14, 951.
(32)Etchegoin, P. G.; Le Ru, E. C. Physical Chemistry Chemical Physics 2008, 10, 6079.
(33)Ruggles, J. L.; Holt, S. A.; Reynolds, P. A.; White, J. W. Langmuir 2000, 16, 4613.
(34)Simister, E. A.; Lee, E. M.; Thomas, R. K.; Penfold, J. The Journal of Physical Chemistry 1992, 96, 1373.
(35)Skoog, e. a. Principles of Instrumental Analysis; 6th ed ed.; Thomson Brooks/Cole., 2007.
(36)Misra, P.; Dubinskii, M. Ultraviolet Spectroscopy and UV Lasers; New York, 2002.
(37)Jeng, U. S.; Su, C. H.; Su, C.-J.; Liao, K.-F.; Chuang, W.-T.; Lai, Y.-H.; Chang, J.-W.; Chen, Y.-J.; Huang, Y.-S.; Lee, M.-T.; Yu, K.-L.; Lin, J.-M.; Liu, D.-G.; Chang, C.-F.; Liu, C.-Y.; Chang, C.-H.; Liang, K. S. Journal of Applied Crystallography 2010, 43, 110.
(38)Liu, D.-G.; Chang, C.-H.; Liu, C.-Y.; Chang, S.-H.; Juang, J.-M.; Song, Y.-F.; Yu, K.-L.; Liao, K.-F.; Hwang, C.-S.; Fung, H.-S.; Tseng, P.-C.; Huang, C.-Y.; Huang, L.-J.; Chung, S.-C.; Tang, M.-T.; Tsang, K.-L.; Huang, Y.-S.; Kuan, C.-K.; Liu, Y.-C.; Liang, K. S.; Jeng, U.-S. Journal of Synchrotron Radiation 2009, 16, 97.
(39)Troupis, A.; Gkika, E.; Hiskia, A.; Papaconstantinou, E. Comptes Rendus Chimie 2006, 9, 851.
(40)Lai, Y.-H.; Cheng, S.-W.; Chen, S.-W.; Chang, J.-W.; Su, C.-J.; Su, A.-C.; Sheu, H.-S.; Mou, C.-Y.; Jeng, U. S. RSC Advances 2013, 3, 3270.
(41)Nagashree, K. L.; Lavanya, R.; Kavitha, C.; Narayanan, N. S. V.; Sampath, S. RSC Advances 2013, 3, 8356.
(42)Njoki, P. N.; Lim, I. I. S.; Mott, D.; Park, H.-Y.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C.-J. The Journal of Physical Chemistry C 2007, 111, 14664.
(43)Silva, R.; Biradar, A. V.; Fabris, L.; Asefa, T. The Journal of Physical Chemistry C 2011, 115, 22810.
(44)Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. The Journal of Physical Chemistry C 2007, 111, 13794.
(45)Konishi, T.; Kiguchi, M.; Takase, M.; Nagasawa, F.; Nabika, H.; Ikeda, K.; Uosaki, K.; Ueno, K.; Misawa, H.; Murakoshi, K. Journal of the American Chemical Society 2012, 135, 1009.
(46)Kruk, M.; Jaroniec, M.; Sayari, A. Microporous and Mesoporous Materials 2000, 35–36, 545.
(47)Luechinger, M.; Pirngruber, G. D.; Lindlar, B.; Laggner, P.; Prins, R. Microporous and Mesoporous Materials 2005, 79, 41.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊