(3.92.96.236) 您好!臺灣時間:2021/05/06 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林學曦
研究生(外文):Lin, Hsueh-Hsi
論文名稱:低氧環境對水生呼吸空氣魚類接吻鱸其離子調節、肝醣代謝及抗氧化能力之影響
論文名稱(外文):The Effects of Hypoxia on Ionoregulation, Glycogen Metabolism and Antioxidant Defenses in the Aquatic Air-breathing Fish, Helostoma temminckii
指導教授:林惠真林惠真引用關係
指導教授(外文):Lin, Hui-Chen
口試委員:林惠真李宗翰曾庸哲湯政豪
口試委員(外文):Lin, Hui-ChenLee, Tsung-HanTseng, Yung-CheTang, Cheng-Hao
口試日期:2013-01-10
學位類別:碩士
校院名稱:東海大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:61
中文關鍵詞:低氧肝醣磷酸化酵素肝醣代謝鈉鉀幫浦抗氧化酵素
外文關鍵詞:hypoxiaglycogen phosphorylaseglycogenolysisNa+/K+-ATPaseantioxidant enzyme
相關次數:
  • 被引用被引用:0
  • 點閱點閱:613
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
近來由於全球暖化造成海洋溫度增加,以及人為排放含氮廢物等使水體優養化,因而降低水體溶氧量,持續的低氧會危害到生活於水中的生物。為使能量達到供需平衡,細胞從有氧呼吸轉變成無氧呼吸,行肝醣分解反應(glycogenolysis)以降解肝醣做為緊急燃料。而為減少ATP消耗,鈉鉀幫浦(sodium-potassium adenosine triphosphatase,Na+, K+-ATPase,NKA)的表現會被抑制。在肝醣分解的過程中,肝醣磷酸化酵素(glycogen phosphorylase,GP)將肝臟與肌肉中的肝醣分解為葡萄糖-1-磷酸(glucose-1-phosphate)的單糖,進而使其繼續進行的糖解作用(glycolysis)。先前研究顯示,魚類鰓部離子調節細胞旁具有富含肝醣細胞(glycogen-rich cells,GR cells),並在面臨環境壓力時進行分解以提供ATP予鈉鉀幫浦。此外,生物在低氧時會產生大量自由基,若抗氧化能力不佳,則自由基的產生會使細胞損傷,因此生物如何調節其生理以適應低氧是十分重要的課題。本實驗以攀鱸亞目的接吻鱸(Helostoma temminckii)為實驗動物,其為水生型呼吸空氣魚類,具有特化輔助呼吸空氣的器官-迷器,可幫助鰓部進行氣體交換,利於在溶氧極低的環境中生存。在先前的實驗中,同一亞目的電光麗麗(Trichogaster lalius)於低氧處理第三天時並無觀察到鈉鉀幫浦的抑制,而接吻鱸的鰓部型態與電光麗麗相似,是否也有相似的反應則未知。為瞭解在三天期間呼吸空氣魚類是否具有肝醣分解而使鈉鉀幫浦獲得能量,則需對此期間的生理變化進一步研究。本實驗假說為,接吻鱸鰓部鈉鉀幫浦未被抑制是否與富含肝醣細胞中的肝醣磷酸化酶分解肝醣,進而提供能量有關;其抗氧化能力亦佳,能夠抵抗低氧時自由基的傷害。實驗結果顯示,接吻鱸在低氧時會增加呼吸空氣頻率。GP蛋白質表現在低氧期間有上升,但NKA表現則未隨之改變;而鰓部及肝臟的肝醣含量在低氧下均有降解。在抗氧化能力方面,鰓部超氧化物歧化酶(superoxide dismutase,SOD)活性在低氧下較回復組高,穀胱甘肽過氧化酵素(glutathione peroxidase,GPx)在低氧及回復組均提升,而穀胱甘肽轉移酶(glutathione-s-transferase,GST)則在低氧及回復組均上升。此外,在肝臟的部分,超氧化物歧化酶在低氧處理時上升,觸酶(catalase,CAT)在低氧下較回復組高,穀胱甘肽還原酶(glutathione reductase,GSR)在低氧時也有上升。由實驗結果可知接吻鱸可調節其行為、生化及生理反應以存活於低氧環境。
Recently, the rising in water temperature and the eutrophication caused by global warming, and anthropogenic discharge of the nitrogenous wastes, lead to a decrease in aquatic oxygen solubility. Serious consequences for aquatic life could be expected if the hypoxic condition prolongs for a period of time. To balance the O2 and metabolism demands, organisms may change from aerobic to anaerobic respiration by utilizing glycogen as the emergency fuel in glycogenolysis, and the function of sodium-potassium adenosine triphosphatase (Na+/K+-ATPase, NKA) may be depressed to preserve energy consumption. In the process of glycogenolysis, glycogen phosphorylase (GP) degrades glycogen in muscle and liver into glucose-1-phosphate for glycolysis. According to previous studies, the glycogen-rich cells (GR cells) in fish gills located right next to mitochondria-rich cells (MR cells). The degrading of glycogen in GR cells could, therefore, cope with high ATP demand from NKA in MR cells when fish is under stress. In addition to the metabolic suppression, organisms produce free radicals harmful to cells in the hypoxic and recovery conditions. Therefore, how organisms adapt to hypoxia is an important issue for survival. The aquatic air-breathing anabantoid fish Helostoma temminckii, with the accessory air-breathing organ labyrinth organ connected with the gills, can live in the hypoxic environment. From the previous studies, it is known that no inhibition of NKA protein abundance and activity in hypoxia was observed within the first three days of the experiment in the other air-breathing fish Trichogaster lalius which has similar gill morphology with H. temminckii. In the present study, it is hypothesized that GP in GR cells degrades glycogen to generate ATP so that NKA in the gills of H. temminckii will not be inhibited. H. temminckii has better antioxidant ability and this will help to prevent from free radical damages in hypoxia and recovery in normoxia. The result indicates that the aquatic air-breathing H. temminckii increased the air-breathing frequency under hypoxia. The protein abundance of GP increased during hypoxic treatment, but expression of NKA did not change accordingly. Glycogen contents degraded during hypoxic condition in the gills and liver. For the antioxidant mechanism in the gills, the superoxide dismutase (SOD) activity in recovery group was higher than that in the hypoxic group and the glutathione peroxidase (GPx) increased under hypoxic and recovery groups. Moreover, glutathione-s-transferase (GST) activity increased in the recovery group. In the liver, the SOD increased under hypoxia and, catalase (CAT) activity in recovery group was higher than that in the hypoxic group. Furthermore, glutathione reductase (GSR) activity increased in the recovery group. In conclusion, H. temminckii regulates its behavioral, biochemical and physiological conditions for surviving under stress condition.
Acknowledgements i
中文摘要 ii
Abstract iv
Table of Contents vi
List of Tables viii
List of Figures ix
List of Appendices x
Introduction 1
Materials and Methods 7
Experimental Animals 7
Experimental Design and Sampling 7
Air-breathing Frequency 8
Protein Extraction 8
Antibodies 9
Western Blotting Analysis 9
Na+, K+-ATPase Activity Assay 10
Preparation of mRNA and cDNA Synthesized from mRNA 11
Quantitative Real-time PCR 11
Glycogen Content 12
Antioxidant Ability 12
Statistics 13
Results 14
Air-breathing Frequency 14
Expression of Ionoregulatory Protein 14
a. NKA Protein Expression in Gill and Kidney 14
b. NKA Enzyme Activity in Gill and Kidney 14
c. NKA mRNA Expression in Gill 15
Glycogenolysis 15
a. GP Protein Expression in Gill and Liver 15
b. GP mRNA Expression in Gill and Liver 15
c. Glycogen Content in Gill and Liver 16
Antioxidant Ability 16
a. SOD Activity in Gill and Liver 16
b. CAT Activity in Gill and Liver 17
c. GPx Activity in Gill and Liver 17
d. GSR Activity in Gill and Liver 17
e. GST Activity in Gill and Liver 17
Discussion 19
Air-breathing Behavior under Hypoxia 19
NKA Expression in Gill and Kidney 19
Glycogen Metabolism in Gill and Liver 22
Antioxidant Defenses in Gill and Liver 26
Conclusions 30
Perspectives 31
References 32
Tables 44
Figures 46
Appendices 58
Personal information 62

Ahmad, S. (1995). Antioxidant mechanisms of enzymes and proteins. In Oxidative Stress and Antioxidant Defenses in Biology (ed. S. Ahmad), pp. 238-272. New York: Springer.
Benizri, E., Ginouvès, A. and Berra, E. (2008). The magic of the hypoxia signalling pathway. Cell. Mol. Life Sci. 65, 1133-1149.
Berg, J. M., Tymoczko, J. L. and Stryer., L. (2002). Glycogen metabolism. In Biochemistry. (ed.), pp. 577-579. New York: W. H. Freeman and Company.
Bickler, P. E. and Buck, L.T. (2007). Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu. Rev. Physiol. 69, 145-70.
Bogdanova, A., Grenacher, B., Nikinmaa, M. and Gassmann, M. (2005). Hypoxic responses of Na+/K+ ATPase in trout hepatocytes. J. Exp. Biol. 208, 1793-1801.
Boutilier, R. G. (2001). Mechanisms of cell survival in hypoxia and hypothermia. J. Exp. Biol. 204, 3171-3181.
Boutilier, R. G. and St-Pierre, J. (2000). Surviving hypoxia without really dying. Comp. Biochem. Physiol. 126A, 481-490.
Brett, J. R. (1979). Environmental factors and growth. In Fish Physiology, Vol. 8, Bioenergetics and Growth (ed. W. S. Hoar D. J. Randall and J. R. Brett), pp. 599-675. New York: Academic Press.
Buck, L. T. and Hochachka, P. W. (1993). Anoxic suppression of Na+/K+-ATPase and constant membrane potential in hepatocytes: support for channel arrest. Am. J. Physiol. 265, R1020-R1025.
Chandel, N. S., McClintock, D. S., Feliciano, C. E., Wood, T. M., Melendez, J. A., Rodriguez, A. M. and Schumacker, P. T. (2000). Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1a during hypoxia. J. Biol. Chem. 275, 25130-25138.
Chang, J. C., Wu, S. M., Tseng, Y. C., Lee, Y. C., Baba, O. and Hwang, P. P. (2007). Regulation of glycogen metabolism in gills and liver of the euryhaline tilapia (Oreochromis mossambicus) during acclimation to seawater. J. Exp. Biol. 210, 3494-3504.
Chapman, L. J., Galis, F. and Shinn, J. (2000). Phenotypic plasticity and the possible role of genetic assimilation: hypoxia-induced trade-offs in the morphological traits of an African cichlid. Ecol. Lett. 3, 387-393.
Clanton, T. L. (2007). Hypoxia-induced reactive oxygen species formation in skeletal muscle. J. Appl. Physiol. 102, 2379-2388.
Coban, M.Z. and Sen, D. 2011. Examination of liver and muscle glycogen and blood glucose levels of Capoeta umbla (Heckel, 1843) living in Hazar Lake and Keban Dam Lake (Elazig, Turkey). Afr. J. Biotechnol. 50, 10271-10279.
Copper, R. U., Clough, L. M., Farwell, M. A. and West, T. L. (2002). Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. J. Exp. Mar. Biol. Ecol. 279, 1-20.
da Cruz, A. L., da Silva, H. R., Lundstedt, L. M., Schwantes, A. R., Moraes, G., Klein, W. and Fernandes, M. N. (2012). Air-breathing behavior and physiological responses to hypoxia and air exposure in the air-breathing loricariid fish, Pterygoplichthys anisitsi. Fish Physiol. Biochem. Epub ahead of print.
Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A. and Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta. 329, 23-38.
Dave, G., Johansson-Sjöbeck, M.-L., Larsson, Å, Lewander, K. and Lidman, U. (1975). Metabolic and hematological effects of starvation in the European eel, Anguilla anguilla L.-I. Carbohydrate, lipid, protein and inorganic ion metabolism. Comp. Biochem. Physiol. 52A, 423-430.
Davis, J. C. (1975). Minimal dissolved-oxygen requirements of aquatic life with emphasis on Canadian species. J. Fish. Res. Board. Can. 32, 2295-2332.
Donald L. K. (2008). The evolutionary ecology of respiratory mode in fishes: an analysis based on the costs of breathing. Environ. Biol. Fish. 9, 145-158.
Donohoe, P. H., West, T. G. and Boutilier, R. G. (2000). Factors affecting membrane permeability and ionic homeostasis in the cold-submerged frog. J. Exp. Biol. 203, 405–414.
Dunn, J. F. and Hochachka, P. W. (1986). Metabolic responses of trout (Salmo gairdneri) to acute environmental hypoxia. J. Exp. Biol. 123, 229-242.
Evans, D. H., Piermarini, P. M. and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev. 85, 97-177.
Febry, R. and Lutz, P. (1987). Energy partitioning in fish: The activity related cost of osmoregulation in a euryhaline cichlid. J. Exp. Biol. 128, 63-85.
Fridovich, I. (1998). Oxygen toxicity: a radical explanation. J. Exp. Biol. 201, 1203-1209.
Garcia Sampaio, F., de Lima Boijink, C., Tie Oba, E., Romagueira Bichara dos Santos, L., Lúcia Kalinin, A. and Tadeu Rantin, F. (2008). Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure. Comp. Biochem. Physiol. 147B, 43-51.
Gilany, K., Aerts, M., Dewilde, S., Devreese, B., Moens, L. and Vafakhah, M. (2011). Proteome analysis of mouse brain exposed to chronic hypoxia. Cell J. 12, 503-510.
Gonzales, T. T. Katoh, M. and Ishimatsu, A. (2006). Air breathing of aquatic burrow-dwelling eel goby, Odontamblyopus lacepedii (Gobiidae: Amblyopinae). J. Exp. Biol. 209, 1085-1092.
Graham, J. B. (1997). Air-Breathing Fishes: Evolution, Diversity and Adapatation. San Diego, CA: Academic Press.
Guppy, M. and Withers, P. (1999). Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol. Rev. 74, 1–40.
Gutteridge, J. M. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 41, 1819-1828.
Helfman, G. S. Collette, B. B. and Facey. D. E. (2009). The Diversity of Fishes: Biology, Evolution, and Ecology. Chichester, UK: Wiley-Blackwell.
Hermes-Lima, M. (2001). Antioxidant defenses and animal adaptation to oxygen availability during environmental stress. In Cell and Molecular Responses to Stress, Vol. 2, (ed. K. B. Storey and J. M. Storey), pp. 263-287. Amsterdam: Elsevier.
Hermes-Lima, M. and Storey, K. B. (1993). Role of antioxidants in the tolerance of freezing and anoxia by garter snakes. Am. J. Physiol. 265, R646-R652.
Hermes-Lima, M. and Storey, K. B. (1995a). Antioxidant defenses and metabolic depression in a pulmonate land snail. Am. J. Physiol. 268, R1386-R1393.
Hermes-Lima, M. and Storey, K. B. (1995b). Xanthine oxidase and xanthine dehydrogenase from an estivating land snail. Z. Naturforschung. 50C, 685-694.
Hermes-Lima, M. and Storey, K. B. (1996). Relationship between anoxia exposure and antioxidant status of the frog Rana pipiens. Am. J. Physiol. 271, R918-R925.
Hermes-Lima, M. and Storey, K. B. (1998). Role of antioxidant defenses in the tolerance of severe dehydration by anurans. The case of the leopard frog Rana pipiens. Mol. Cell. Biochem. 189, 79-89.
Hermes-Lima, M., Storey, J. M. and Storey K. B. (1998). Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comp. Biochem. Physiol. 120B, 437-448.
Hochachka, P. W. (1986). Defense strategies against hypoxia and hypothermia. Science 231, 234-241.
Huang C. Y. and Lin, H. C. unpublished. Morphological plasticity in the gills of an aquatic air-breathing fish, Trichogaster microlepis.
Hwang, P. P., Lee, T. H. and Lin, L. Y. (2011). Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am. J. Physiol. 301, R28–R47.
Hwang, P. P., Lee, T. H., Weng, C. F., Fang, M. J. and Cho, G. Y. (1999). Presence of Na+/K+-ATPase in mitochondria-rich cells in yolk-sac epithelium of larvae of the teleost, Oreochromis mossambicus. Physiol. Biochem. Zool. 72, 138-144.
Hylland, P., Milton, S., Pek, M., Nilsson, G. E. and Lutz, P. L. (1997). Brain Na+/K+-ATPase activity in two anoxia tolerant vertebrates: crucian carp and freshwater turtle. Neurosci. Lett. 235, 89-92.
Iftikar, F. I., Matey, V. and Wood, C. M. (2010). The ionoregulatory responses to hypoxia in the freshwater rainbow trout Oncorhynchus mykiss. Physiol. Biochem. Zool. 83, 343-55.
Joanisse, D. R. and Storey K. B. (1996). Oxidative damage and antioxidants in Rana sylvatica, the freeze tolerant wood frog. Am. J. Physiol. 271, R545-R553.
Johnston, I. A. and Goldspink G. (1973a). A study of glycogen and lactate in the myotomal muscles and liver of the coalfish (Gadus virens L.) during sustained swimming. J. Mar. Biol. Ass. 53, 17-26.
Johnston, I. A. and Goldspink G. (1973b). Quantitative studies of muscle glycogen utilization during sustained swimming in crucian carp (Carassius carassius L). J. Exp. Biol. 59, 607-615.
Kirschner, L. B. (1993). The energetics aspects of osmotic regulation in ureotelic and hypoosmotic fishes. J. Exp. Zool. 267, 19-26.
Kirschner, L. B. (1995). Energetics aspects of osmoregulation in fresh water vertebrates. J. Exp. Zool. 271, 243-252.
Kramer, D. L. (1983). The evolutionary ecology of respiratory mode in fishes: an analysis based on the costs of breathing. Environ. Biol. Fish. 9, 145-158.
Kramer, D.L. (1987). Dissolved oxygen and fish behavior. Environ. Biol. Fish. 18, 81-92.
Lee, T. H., Tsai, J. C., Fang, M. J., Yu, M. J. and Hwang, P. P. (1998). Isoform expression of Na+-K+-ATPase a subunit in gills of the teleost, Oreochromis mossambicus. Am. J. Physiol. 275, R926-R932.
Lesley, A. A., Craig, R. W. and Roger S. S. (2007). Effect of aerial O2 partial pressure on bimodal gas exchange and air-breathing behaviour in Trichogaster leeri. J. Exp. Biol. 210, 2311-2319.
Lewis, J. M. and Driedzic, W. R. (2010). Protein synthesis is defended in the mitochondrial fraction of gill but not heart in cunner (Tautogolabrus adspersus) exposed to acute hypoxia and hypothermia. J. Comp. Physiol. 180B, 179-188.
Lin, Y. S., Tsai, S. C., Lin, H. C., Hsiao, C. D. and Wu, S. M. (2011). Changes of glycogen metabolism in the gills and hepatic tissue of tilapia (Oreochromis mossambicus) during short-term Cd exposure. Comp. Biochem. Physiol. 154C, 296-304.
Low, W. P., Peng, K. W., Phuan, S. K., Lee, C. Y. and Ip, Y. K. (1993). A comparative study on the responses of the gills of two mudskippers to hypoxia and anoxia. J. Comp. Physiol. 163B, 487-494.
Lundgreen, K., Kiilerich, P., Tipsmark, C. K., Madsen, S. S. and Jensen, F. B. (2008). Physiological response in the European flounder (Platichthys flesus) to variable salinity and oxygen conditions. J. Comp. Physiol. 178B, 909-915.
Lushchak, V. I. and Bagnyukova, T. V. (2007). Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii. Comp. Biochem. Physiol. 148A, 390-397.
Lushchak, V. I., Bagnyukova, T. V., Lushchak, O.V., Storey, J. M. and Storey, K. B. (2005). Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int. J. Biochem. Cell. Biol. 37, 1319-1330.
Lushchak, V. I., Lushchak, L. P., Mota, A. A. and Hermes-Lima, M. (2001). Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am. J. Physiol. 280, R100-R107.
Majmundar, A., Wong, W. J. and Simon, C. (2010). Hypoxia-inducible factors and the responses to hypoxic stress. Mol. Cell 40, 294-309.
Marcon, J. L. and Wilhelm Filho, D. (1999). Antioxidant processes of the wild tambaqui, Colossoma macropomum (Osteichthyes, Serrasalmidae) from the Amazon. Comp. Biochem. Physiol. 123C, 257-263.
Marshall, W. S. (2002). Na+, Cl-, Ca2+and Zn2+ transport by fish gills: retrospective review and prospectives synthesis. J. Exp. Zool. 293, 264-283.
Martínez, M. L., Landry, C., Boehm, R., Manning, S., Cheek, A. O. and Rees, B. B. (2006). Effects of long-term hypoxia on enzymes of carbohydrate metabolism in the Gulf killifish, Fundulus grandis. J. Exp. Biol. 209, 3851-3861.
Matey, V., Richards, J. G., Wang, Y., Wood, C. M., Rogers, J., Davies, R., Murray, B. W., Chen, X. -Q,. Du, J. and Brauner, C. J. (2008). The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii. J. Exp. Biol. 211, 1063-1074.
Mattias, A. T., Rantin, F. T. and Fernandes, M. N. (1998). Gill respiratory parameters during progressive hypoxia in the facultative air-breathing fish, Hypostomus regani (Loricariidae). 120, 311-315.
McNeil, D. G. and Gloss, G. P. (2007). Behavioural responses of a south-east Australian floodplain fish community to gradual hypoxia. Freshwater Biol. 52, 412-420
Mitrovic, D., Dymowska, A., Nilsson, G. E. and Perry, S. F. (2009). Physiological consequences of gill remodeling in goldfish (Carassius auratus) during exposure to long-term hypoxia. Am. J. Physiol. 297, R224-R234.
Morgan, J. D. and Iwama, G. K. (1999). Energy cost of NaCl transport in isolated gills of cutthroat trout. Am. J. Physiol. 277, R631-R639.
Ngan, A. K. and Wang, Y. S. (2009). Tissue-specific transcriptional regulation of monocarboxylate transporters (MCTs) during short-term hypoxia in zebrafish (Danio rerio). Comp. Biochem. Physiol. 154B, 396-405.
Nilsson, G. E. (1990). Long-term anoxia in crucian carp: changes in the levels of amino acid and monoamine neurotransmitters in the brain, catecholamines in chromaffin tissue, and liver glycogen. J. Exp. Biol. 150, 295-320.
Paxton, R. and Umminger, B. L. (1983). Altered activities of branchial and renal Na+/K+- and Mg2+-ATPases in cold-acclimated goldfish (Carassius auratus). Comp. Biochem. Physiol. 74B, 503-506.
Pichavant, K., Person-Le-Ruyet, J., Le Bayon, N., Sévère, A., Le Roux, A., Quéméner, L., Maxime, V., Nonnotte, G. and Boeuf, G. (2000). Effects of hypoxia on growth and metabolism of juvenile turbot. Aquaculture 188, 103-114.
Rabalais, N. N., Turner, R. E., Díaz, R. J. and Justić D. (2009). Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 66, 1528-1537.
Raha, S. and Robinson, B. H. (2000). Mitochondria, oxygen free radicals, decease and ageing. Trends Biochem. Sci. 25, 502-508.
Randle A. M. and Chapman L. J. (2005). Air-breathing behaviour of the African anabantoid fish Ctenopoma muriei. J. Fish. Biol. 67, 292-298.
Richards, J. G. (2010). Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J. Exp. Biol. 214, 191-199.
Seagroves, T. N., Ryan, H. E., Lu, H., Wouters, B. G., Knapp, M., Thibault, P., Laderoute, K. and Johnson, R. S. (2001).Transcription factor HIF-1 is a necessary mediator of the Pasteur effect in mammalian cells. Mol. Cell Biol. 21, 3436-3444.
Singhal, S. S., Saxena, M., Ahmad, H. Awasthi, S., Haque, A. K. and Awasthi, Y. C. (1992). Glutathione S-transferase of human lung: characterization and evaluation of the protective role of the x-class isozymes against lipid peroxidation. Arch. Biochem. Biophys. 299, 132-241.
Sollid, J., De Angelis, P., Gundersen, K. and Nilsson, G. E. (2003). Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. J. Exp. Biol. 206, 3667-3673.
Sollid, J., Weber, R. E. and Nilsson, G. E. (2005). Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus. J. Exp. Biol. 208, 1109-1116.
Storey, K.B. (1996). Oxidative stress: animal adaptations in nature. Braz. J. Med. Biol. Res. 29, 1715-1733.
Takasusuki, J., Fernandes, M. N. and Severi, W. (1998). The occurrence of aerial respiration in Rhinelepis strigosa during progress hypoxia. J. Fish Biol. 52, 369-379.
Taylor, C. T. (2008). Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem. J. 409, 19-26.
Timmerman, C. M. and Chapman, L. J. (2004). Behavioral and physiological compensation for chronic hypoxia in the sailfin molly (Poecilia latipinna). Physiol. Biochem. Zool. 77, 601-610.
Tomas T., Gonzales, Masaya K. and Atsushi, I. (2006). Air breathing of aquatic burrow-dwelling eel goby, Odontamblyopus lacepedii (Gobiidae: Amblyopinae). J. Exp. Biol. 209, 1085-1092.
Ton, C., Stamatiou, D. and Liew, C. C. (2011). Gene expression profile of zebrafish exposed to hypoxia during development. Physiol. Genomics. 13, 97-106.
Tran-Duy, A., Schrama, J. W., van Dam, A. A., and Verreth, J. A. J. (2008). Effects of oxygen concentration and body weight on maximum feed intake, growth and haematological parameters of Nile tilapia, Oreochromis niloticus. Aquaculture 275, 152-162.
Tseng Y. C. and Hwang P. P. (2008). Some insights into energy metabolism for osmoregulation in fish. Comp. Biochem. Physiol. 148C, 419-429.
Tseng, Y. C., Huang, C. J., Chang, J. C., Teng, W. Y., Baba, O., Fann, M. J. and Hwang, P. P. (2007). Glycogen phosphorylase in glycogen-rich cell is involved in the energy supply for ion regulation in fish gill epithelia. Am. J. Physiol. 93, R482-491.
Ullah, M. S. Davies, A. J. and Halestrap, A. P. (2006). The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1-dependent mechanism. J. Biol. Chem. 281, 9030-9037.
Ura, K., Soyano, K., Omoto, N., Adachi, S. and Yamauchi, K. (1996). Localization of Na+/K+-ATPase in tissues of rabbit and teleosts using an antiserum directed against a partial sequence of the α-subunit. Zool. Sci. 13, 219–227.
Urbina, M. A., and Glover, C. N. Forster, M. E. (2012). Should I stay or should I go? A novel oxyconforming response in the freshwater fish Galaxias maculatus. Comp. Biochem. Physiol. 161A, 301-306.
Urbina, M. A., Forster, M. E. and Glover, C. N. (2011). Leap of faith: voluntary emersion behaviour and physiological adaptations to aerial exposure in a non-aestivating freshwater fish in response to aquatic hypoxia. Physiol. Behav. 103, 240-247.
van den Thillart, G., Kesbeke, F. and van Waarde, A. (1980). Anaerobic energy metabolism of gold fish, Carassius auratus (L.). Influence of hypoxia and anoxia on phosphorylated compounds and glycogen. J. Comp. Physiol. 136, 45-52.
van der Meer, D. L., van den Thillart, G. E., Witte, F., de Bakker, M. A., Besser, J., Richardson, M. K., Spaink, H. P., Leito, J. T. and Bagowski, C. P. (2005). Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. Am. J. Physiol. 289, R1512-R1519.
Vig, E. and Nemcsok, J. (1989). The effect of hypoxia and paraquat on the superoxide dismutase activity in different organs of carp, Cyprinus carpio L. J. Fish Biol. 35, 23-25.
Vornanen, M. and Haverinen, J. (2011). Seasonality of glycogen phosphorylase activity in crucian carp (Carassius carassius L.). J. Comp. Physiol. 181B, 917-926.
Vornanen, M., Asikainen, J. and Haverinen, J. (2011). Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp (Carassius carassius L.) Naturwissenschaften. 98, 225-232.
Wang, T., Lefevre, S., Huong, D. T. T., van Cong, N. and Bayley, M. (2009). The effects of hypoxia on growth and digestion. In Hypoxia (ed. J. G. Richards A. P. Farrell and C. J. Brauner), pp. 361-396. San Diego: Elsevier.
Wilhelm Filho, D. (1996). Fish antioxidant defenses-a comparative approach. Braz. J. Med. Biol. Res. 29, 1735-1742.
Wilhelm Filho, D. (2007). Reactive oxygen species, antioxidants and fish mitochondria. Frontier. Bios. 12, 1229-1237.
Wilhelm Filho, D., Giulivi, C. and Bovrri, A. (1993). Antioxidant defences in marine fish-I. Teleosts. Comp. Biochem. Physiol. 106C, 409-413.
Wilhelm Filho, D., González-Flecha, B. and Boveris A. (1994). Gill diffusion as a physiological mechanism for hydrogen peroxide elimination by fish. Braz. J. Med. Biol. Res. 27, 2879-2882.
Wilkie, M. P., Pamenter, M. E., Alkabie, S., Carapic, D., Shin, D. S. H. and Buck L. T. (2008). Evidence of anoxia-induced channel arrest in the brain of the goldfish (Carassius auratus). Comp. Biochem. Physiol. 148C, 355-362.
Wolf, N. G. and Kramer, D. L. (1987). Use of cover and the need to breathe: the effects of hypoxia on vulnerability of dwarf gouramis to predatory snakeheads. Oecologia 73,127-132.
Woo, S. P. S., Liu, W., Au, D. W. T., Anderson, D. M. and Wu, R. S. S. (2006). Antioxidant responses and lipid peroxidation in gills and erythrocytes of fish (Rhabdosarga sarba) upon exposure to Chattonella marina and hydrogen peroxide: Implications on the cause of fish kills. J. Exp. Mar. Biol. Ecol. 336, 230-241.
Wood, C. M., Iftikar, F. I., Scott, G. R., De Boeck, G., Sloman, K. A., Matey, V., Valdez Domingos, F. X., Duarte, R. M., Almeida-Val, V. M. and Val, A. L. (2009). Regulation of gill transcellular permeability and renal function during acute hypoxia in the Amazonian Oscar (Astronotus ocellatus): new angles to the osmorespiratory compromise. J. Exp. Biol. 212, 1949-1964.
Wood, C. M., Kajimura, M., Sloman, K. A., Scott, G. R., Walsh, P. J., Almeida-Val, V. M. and Val, A. L. (2007). Rapid regulation of Na+ fluxes and ammonia excretion in response to acute environmental hypoxia in the Amazonian Oscar, Astronotus ocellatus. Am. J. Physiol. 292, R2048-R2058.
Wu, R. S.S. (2002). Hypoxia: from molecular responses to ecosystem responses. Mar. Pollut. Bull. 45, 35-45.
Yu, K. L. and Woo, N. Y. S. (1987). Metabolic adjustments of an air-breathing teleost, Channa maculate, to acute and prolonged exposure to hypoxic water. J. Fish Biol. 31, 165-175.
Zhou, B. S., Wu, R. S. S., Randall, D. J., Lamp. K. S., Ip, Y. K. and Chew, S. F. (2000). Metabolic adjustments in the common carp during prolonged hypoxia. J. Fish. Biol. 57, 1160-1171.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔