跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐鈺欣
研究生(外文):Hsu, Yu-Hsin
論文名稱:黃金銀耳多醣體調節3T3-L1小鼠脂肪細胞之胰島素傳訊及細胞激素分泌
論文名稱(外文):Regulating Insulin Signaling and Secreted Cytokines in 3T3-L1 Cells by Glucuronoxylomannan Purified from Tremella mesenterica
指導教授:盧錫祺盧錫祺引用關係
指導教授(外文):Lu, Hsi-Chi
口試委員:張世良陳春榮謝長奇
口試委員(外文):Chang, Shih-LiangChen, Chuen-RungHsieh, Chang-Chi
口試日期:2012-10-22
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:132
中文關鍵詞:多醣體脂肪細胞
外文關鍵詞:GlucuronoxylomannanAdipocyte
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1038
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:0
隨現代人生活越來越富裕,許多的文明病像是肥胖、高血壓、糖尿病等慢性疾病的發生隨之增加。第二型糖尿病為胰島素作用缺失導致醣類、脂肪及蛋白質代謝異常之慢性疾病,佔所有相關病例九成以上,為數更多的未病群面臨逐漸惡化而仍可逆之血糖過高及胰島素阻抗,如能協助增進敏感性可避免演進至疾病狀態。蕈菇類包含黃金銀耳之多醣體已證實可能透過胰島素增敏而改善實驗動物之高血糖,而人體內脂肪組織不僅具有帶入葡萄糖能力,還可分泌多種細胞激素調節週邊組織之胰島素敏感性,本論文將黃金銀耳glucuronoxylomannan (GXM)與3T3-L1脂肪細胞共置,以作用濃度及時間等各項參數探討胰島素傳訊層面及調節分泌細胞激素的影響。
結果顯示,在高糖及高胰島素共同作用24小時後降低3T3-L1細胞Akt 磷酸化及脂聯素(Adiponectin)分泌量、增加抗素(Resistin)及IL-6分泌。於阻抗狀態下添加酸性多醣可顯著增加AMPK磷酸化和增加IL-6分泌、降低抗素含量、在200 ppm GXM作用下顯著增加脂聯素含量。在此實驗架構下即使在與胰島素共同刺激,也未觀察到酸性多醣可增強胰島素傳訊路徑。正常狀態下細胞添加酸性多醣會降低抗素及脂聯素量、增加IL-6分泌。在模擬細胞攝入葡萄糖試驗中,不管正常或阻抗態細胞,添加酸性多醣後皆可增加細胞攝入葡萄糖擬似物能力。以上結果發現,黃金銀耳酸性多醣在3T3-L1脂肪細胞中藉由改善脂泌素分泌狀況及增加AMPK活性而非經由胰島素傳訊來改善胰島素阻抗性。

Type 2 diabetes mellitus is a chronic disease associated with abnormality in carbohydrate, protein and lipid metabolism and is caused by ineffectiveness of insulin action. About 90% of the diabetic incidence belongs to type 2 diabetes. Even more are suffering from deteriorating yet reversible prediabetic hyperglycemia and insulin resistance, which could be averted by insulin-sensitizing remedies. Anti-diabetic activities of glucuronoxylomannan (GXM) from Tremella mesenterica has been demonstrated in animal model, and is linked to improved insulin sensitivity in muscle and liver cells. Recent studies suggested that adipose tissue may play active roles in glucose homeostasis not only by glucose uptake, but through the profile of secreted adipokines. In this study, differentiated 3T3-L1 murine adipocytes were rendered insulin resistant, and were coincubated with various concentrations of GXM for different durations, before targets in insulin signaling and released cytokines were investigated.
The results show that high concentrations of glucose and insulin decreased AKT phosphorylation and adiponectin secretion in 3T3-L1 cells, while elevated resistin and IL-6 levels. Addition of resistant cells with GXM significantly increased AMPK phosphorylation, adiponectin (200 ppm GXM) and IL-6 secretion but decreased resistin secretion. Enhanced insulin signaling by GXM was not observed, even when insulin was coadministrated. Uptake of 2-NBDG was greatly enhanced after adding GXM, both in normal or insulin-resistant cells. Taking together, these data suggested GXM possesses anti-hyperglycemic activity, and acting mainly through improved adipokines secreting profiles, and enhanced AMPK but not insulin signaling pathway in 3T3-L1 adipocytes.

中文摘要 I
英文摘要 II
文獻回顧
壹、糖尿病 1
一、糖尿病的分類 1
二、糖尿病的診斷 3
三、糖尿病的治療 3
四、代謝症候群與脂肪組織關係 5
貳、研究模式 6
一、脂肪組織 6
二、前驅脂肪細胞研究模式之細胞株 8
三、3T3-L1前驅脂肪細胞分化之進程 8
參、胰島素傳訊路徑與AMPK介紹 11
一、胰島素傳訊路徑 11
二、AMPK介紹 18
肆、細胞激素與胰島素阻抗關聯性 22
一、細胞激素介紹 26
伍、高糖與高胰島素誘發胰島素阻抗模式之機制 35
一、胰島素阻抗 35
二、高糖高胰島素誘發胰島素阻抗 35
陸、黃金銀耳與其生理功效 36
研究動機與實驗架構 37
材料方法
壹、實驗材料 39
一、小鼠脂肪細胞株 39
二、細胞培養基 39
三、脂肪細胞分化試劑 39
四、葡萄糖擬似物 40
五、黃金銀耳Tremella mesenterica酸性多醣 40
六、細胞培養其它藥品 40
七、 蛋白質分析試劑 41
八、ELISA Kit 42
九、油紅染色試劑 42
十、同步定量mRNA表現量分析 42
十一、主要儀器及設備 42
貳、實驗方法 44
一、黃金銀耳酸性多醣分子量測定 44
二、細胞培養、繼代與分化 44
三、油紅染色 45
四、誘導3T3-L1細胞產生胰島素抗性 45
五、細胞毒性試驗 45
六、 3T3-L1細胞葡萄糖擬似物帶入量分析 46
七、3T3-L1細胞之蛋白質萃取 46
八、蛋白質定量 46
九、 西方轉漬法 47
十、酵素連結免疫分析 49
十一、抽取3T3-L1細胞RNA 49
十二、cDNA製備 50
十三、同步定量聚合酶連鎖反應 50
十四、統計分析 51
結果
一、分化十天後成熟脂肪細胞油紅染色圖 53
二、不同濃度之glucuronoxylomannan (GXM)對3T3-L1細胞毒性測試 54
三、黃金銀耳酸性多醣分子量測定 55
四、不同濃度葡萄糖誘導3T3-L1細胞產生胰島素阻抗 58
4-1 3T3-L1細胞產生胰島素阻抗對於Akt及pAkt (Ser473)蛋白質相對含量之影響 58
4-2不同濃度葡萄糖對3T3-L1細胞分泌細胞激素之影響 61
4-3 3T3-L1細胞對葡萄糖擬似物2-NBDG攝入量 65
五、阻抗態3T3-L1細胞添加酸性多醣12小時及24小時後之影響 68
5-1胰島素傳訊路徑IR、IRS1、Akt、pAkt (Ser473)及pAMPK (Thr172)相對表現量 68
5-2阻抗態3T3-L1細胞添加酸性多醣後細胞激素分泌影響 77
六、正常態3T3-L1細胞添加酸性多醣12小時及24小時後之影響 82
6-1胰島素傳訊路徑IR、IRS1、Akt、pAkt (Ser473)及pAMPK (Thr172)相對表現量 82
6-2正常態3T3-L1細胞添加酸性多醣後細胞激素分泌影響 89
討論 94
未來展望 103
參考文獻 105

1. 王茹婕。白藜蘆醇對3T3-L1前驅脂肪細胞分化之調控機制。(2009) 東海大學食品科學研究所,碩士論文 6-9。
2. 吳青蓉。黃金銀耳酸性多醣對FL83B小鼠肝臟細胞具胰島素增敏功效。(2011) 東海大學食品科學研究所,碩士論文 38-81。
3. 呂淑芳、宮昭雲、傅偉光。靈芝中之水溶性粗多醣分析方法之研究。(2001) 台灣農業化學與食品科學39:153- 161。
4. 杜巍、李元瑞、袁靜。食藥用菌多醣生物活性結構的關係。(2002) 中國食用菌 21:28-30。
5. 國立自然科學博物館,自然與人文數位博物館
6. 黃仁彰。食藥用菇類保健食品之研發。食藥用菇類的培養與應用。(1998) 食品工業發展研究所專題報告。
7. 劉波。中國藥用真菌。(1978) 第1版。
8. 鄭汝翔。黃金銀耳於糖尿病大鼠模式肝臟中降血糖機制之探討。(2010) 東海大學食品科學研究所,碩士論文 31-73。
9. 賴惠蘭。黃金銀耳於糖尿病大鼠模式肌肉中降血糖機制之探討。(2010) 東海大學食品科學研究所,碩士論文 29-57。
10. Accili D, Drago J, Lee EJ, Johnson MD, Cool MH, Salvatore P, Asico LD, Jose’ PA, Taylor SI, and Westphal H. (1996) Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat. Genet. 12:106-109.
11. Al-Khalili L, Bouzakri K, Glund S, Lonnqvist F, Koistinen HA, and Krook A.(2006) Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol. Endocrinol. 20:3364–3375.
12. Angel A, Desai K, and Halperin ML. (1971) Free fatty acid and ATP levels in adipocytes during lipolysis. Metab. 20:87–99.
13. Arner P. (2005) Insulin Resistance in Type 2 Diabetes – Role of the Adipokines. Curr. Mol. Med. 5: 333-339.
14. Bai Y, Zhang S, Kim KS, Lee JK, and Kim KH. (1996) Obese gene expression alters the ability of 30A5 preadipcytes to respond to lipogenic hormines. J. Biol. Chem. 271:13939-13924.
15. Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhoades B, Qi Y, Wang J, Rajala MW, Pocai A, Scherer PE, Steppan CM, Ahima RS, Obici S, Rossetti L, and Lazar MA. (2004) Regulation of fasted blood glucose by resistin. Sci. 303:1195-1198.
16. Bastard JP, Maachi M, Van Nhieu JT, Jardel C, Bruckert E, Grimaldi A, Robert JJ, Capeau J, and Hainque B. (2002) Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J. Clin. Endocrinol. Metab. 87:2084-2089.
17. Berti L, Kellerer M, Capp E, and Haring HU. (1997) Leptin stimulates glucose transport and glycogen sythesis in C2C12 myotubes: evidence for a PI3-kinase mediated effect. Diabetol. 40:606-609.
18. Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A, and Richelsen B. (2003) Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am. J. Physiol. Endocrinol. Metab. 285:527–533.
19. Buren J, Liu HX, Lauritz J, and Eriksson JW. (2003) High glucose and insulin in combination cause insulin receptor substrate-1 and -2 depletion and protein kinase B desensitisation in primary cultured rat adipocytes: possible implications for insulin resistance in type 2 diabetes. Eur. J. Endocrinol. 148:157–167.
20. Butler AA, and Leroith D. (2001) Tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinol. 142:1685-1688.
21. Cai D, Dhe-Paganon S, Melendez PA, Lee J, and Shoelson SE. (2003) Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J. Biol. Chem. 278:25325-25330.
22. Cannon B, and Nedergaard J. (2004) Brown adipose tissue:function and physiological significance. Physiol. Rev. 84(1):277-359.
23. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, et al (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55:2688–2697.
24. Ceriello A. (2003) New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care. 26:1589-1596.
25. Chandran M, Phillips SA, Ciaraldi T, and Henry RR. (2003) Adiponectin: more than just another fat cell hormone? Diabetes Care 26:2442-2450.
26. Chen YW, Lo HC, Yang JG, Chien CH, Lee SH, Tseng CY, and Huang BM. (2006) The regulatory mechanism of Tremella mesenterica on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 79: 584-90.
27. Cheng AY, Fantus IG. (2005) Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ. 172:213-226.
28. Cheung PC, Salt IP, Davies SP, Hardie DG and Carling D. (2000). Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J. 346:659–669.
29. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, Bartolomei MS, Shulman GI, and Birnbaum MJ. (2001b) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2(PKB beta). Sci. 292:1728-1731.
30. Cho H, Thorvaldsen JL, Chu Q, Feng F, and Birnbaum MJ. (2001a) Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose. J. Biol. Chem. 276:38349-38352.
31. Cichy SB, Uddin S, Danilkovich A, Guo S, Klippel A, and Unterman TG. (1998) Protein kinase B/Akt mediates effect of insulin on hepatic insulin-like growth factor-binding protein-1 gene expresstion through a conserved insulin response sequence. J. Biol.Chem. 273:6482-6487.
32. Civitarese AE, Jenkinson CP, Richardson D, Bajaj M, Cusi K, Kashyap S, Berria R, Belfort R, DeFronzo RA, Mandarino LJ, and Ravussin E. (2004)Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes. Diabetol. 47:816-820.
33. Cohen B, Novick D, and Rubinstein M, (1996) Modulation of insulin activities by leptin. Sci. 274:1185-1188.
34. Cross DA, Alessi DR, Cohen P, Andjelkovich M, and Hemmings BA. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 378: 785-789.
35. D’Alessio D. ( 2011) The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes. 13 : 126–132.
36. Daval M, Diot-Dupuy F, Bazin R, Hainault I, Viollet B, Vaulont S, Hajduch E, Ferre P, and Foufelle F. (2005) Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J. Biol. Chem. 280:25250-25257.
37. Debard C, Laville M, Berbe V, Loizon E, Guillet C, Morio-Liondore B, Boirie Y, and Vidal H. (2004) Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients. Diabetol. 47:917-925.
38. Douen AG, Ramlal T, Rastogi S, Bilan PJ, Cartee GD, Vranic M, Holloszy JO, and Klip A. (1990) Exercise induces recruitment of the “insulin-responsive glucose transporter”. Evidence for distinct intracellular insulin-and exercise-recruitable transporter pools in skeletal muscle. J. Biol. Chem. 265:13427-13430.
39. Fasshauer M, and Paschke R. (2003) Regulation of adipocytokines and insulin resistance. Diabetol. 46:1594-1603 .
40. Fehmenn HC, Peiser C, Bode HP, Stamm M, Staats P, Hedetoft C, Lang RE, and Goke B. (1997) Leptin: a potent inhibitor of insulin secretion. Peptides 18:1267-1273.
41. Fisher SJ, Kahn C. (2003) Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J. Clin. Invest. 111:463-468.
42. Flier JS. (1997) Leptin eapression and action:new experimental paradigms. Proc. Natl. Acad. Sci. USA 94:4242-4245.
43. Fonseca FL, Nohara LL, Cordero RJB, Frases S, Casaderall A, Almeid IC, et al (2010) Immunomodulatory effects of serotype B glucuronoxylomannan from Cryptococcus gattii Correlate with polysaccharide diameter. Am. Soci Microbiol. 78:3861-3870.
44. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE and Lodish HF. (2001) Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA. 98:2005–2010.
45. Garlid KD, Jaburek M, and Jezek P. (1998) The mechanism of proton transport mediated by mitochondrial uncoupling proteins. FEBS Lett 438:10-14.
46. Gavin JR, Roth J, Neville DM, de Meyts P, and Buell DN. (1974)Insulindependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci USA. 71:84–88.
47. Gregoire FM, Smas CM, and Sul HS. (1998) Understanding adipocyte differentiation. Physiol Rev. 78:783-809.
48. Hada Y, Yamauchi T, Waki H, Tsuchida A, Hara K, Yago H, Miyazaki O, Ebinuma H, and Kadowaki T. (2007) Selective purification and characterization of adiponectin multimer species from human plasma. Biochem. Biophys. Res. Commun. 356:487–493.
49. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, and Eriedman JM, (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Sci. 269:543-546.
50. Hardie DG, and Carling D. (1997). The AMP-activated protein kinase – fuel gauge of the mammalian cell? Eur. J. Biochem. 246:259–273.
51. Hauner H. (1990) Complete adipose differentiation of 3T3-L1 cells in a chemically defined medium:comparison to serum-containing culture conditions. Endocrinol. 127:865-872.
52. Hawley SA, Boudeau J, Reid JL,Mustard KJ, Udd L,Makela TP, Alessi DR, and Hardie DG. (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2:28.
53. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, and Hardie DG. (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19.
54. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ. (1998) Evidence for 5’AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47:1369-1373.
55. Helga E, Irina H, Beat S, Abdella MH, Laurie LB, Daniel TM, Elisabeth E, Karim B, Stephan W, Yannick DM, Ann MKH, et al. (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nature 11:1481-1489.
56. Herman MA, and Kahn BB. (2006) Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Invest. 116(7):1767-75.
57. Hu E, Liang P, and Spiegelman BM. (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271:10697–10703.
Huang S, and Czech MP. (2007) The GLUT4 glucose transporter. Cell Metab. 5:237-252.
58. Huypens P, Quartier E, Pipeleers D, and Van de Casteele M. (2005). Metformin reduces adiponectin protein expression and release in 3T3-L1 adipocytes involving activation of AMP activated protein kinase. Eur. J. Pharmacol. 518:90–95.
59. Janke J, Engeli S, Gorzelniak K, Luft FC, and Sharma AM. (2002) Resistin gene expression in human adipocytes is not related to insulin resistance. Obes. Res. 10:1-5.
60. Jequier E, and Tappy L. (1999) Regulation of body weight in humans. Physiol Rev. 79: 451-480.
61. Jorgensen SB, Honeyman J, Oakhill JS, Fazakerley D, Stockli J, Kemp BE, and Steinberg GR, (2009) Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation. Am. J. Physiol. Endocrinol. Metab. 297:57–66.
62. Kahn BB, Alquier T, Carling D, and Hardie DG. (2004) AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1:15–25.
63. Kelly M, Keller C, Avilucea PR, Keller P, Luo Z, Xiang X et al. (2004). AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem. Biophys. Res. Commun. 320:449–454.
64. Khondkar P, Aidoo KE, and Tester RF. (2002) Sugar profile of extracellular polysaccharides from different Tremella species. Int. J. Food Microbiol. 79: 121-129.
65. Kiho T, Morimoto H, Sakushima M, Usui S, and Ukai S. (1995) Polysaccharides in fungi. XXXV. Anti diabetic activity of an acidic polysaccharide from the fruiting bodies of Tremella aurantia. Biol Pharm Bull. 18: 1627-1629.
66. Kiho T, Ookubo K, Usui S, Ukai S, Hirano K. (1999) Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis. Biol. Pharm. Bull. 22: 966-970.
67. Kim JK, Zisman A, Fillmore JJ, Peroni OD, Kotani K, Perret P, Zong H, DongJ, Kahn CR, Kahn BB, and Shulman GI. (2001) Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J. Clin. Invest. 108:153-160.
68. Kim KH, Lee K, Moon YS, and Sul HS. (2001) A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J. Biol. Chem. 276:11252-11256.
69. Kim S, and Moustaid-Moussa N. (2000) Secretory, endocrine and autocrine/paracrine function of the adipocyte. J. Nutr. 130:3110-3115.
70. Kishida K, Shimomura I, Nishizawa H, Maeda N, Kuriyama H, Kondo H, Matsuda M, Nagaretani H, Ouchi N, Hotta K, Kihara S, Kadowadi T, Funahashi T, and Matsuzawa Y. (2001) J. Biol. Chem. 276: 48572-48579.
71. Kobayashi H, Ouchi N, Kihara S, Walsh K, Kumada M, Abe Y, Funahashi T, and Matsuzawa Y, (2004) Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ. Res. 94:27–31.
72. Lagace DC, and Nachtigal MW. (2004) Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis. J. Biol. Chem. 279:18851-18860.
73. Lau CH, Chan CM, Chan YW, Lau KM, Lau TW, Lam FC, Law WT, Chae CT, Leung PC, Fung KP, Ho YY, and Lau CBS. (2007) Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine. 14:778-784.
74. Le LS, Boucher J, Rey A, et al. (2001) Decreased resistin expression in mice with different sensitivities to a high-fat diet. Biochem. Biophys. Res. Commum. 289:564-567.
75. Leturque A, Loizeau M, Vaulont S, Salminen M, and Girard J. (1996) Improvement of insulin action in diabetic transgenic mice selectively overexpressing GLUT4 in skeletal muscle. Diabetes. 45:23-27.
76. Lihn AS, Jessen N, Pedersen SB, Lund S. and Richelsen B. (2004). AICAR stimulates adiponectin and inhibits cytokines in adipose tissue. Biochem. Biophys. Res. Commun. 316:853–858.
77. Lo HC, Chen YW, Chien CH, Tseng CY, Kuo YM, and Huang BM. (2005) Effects of Tremella mesenterica on steroidogenesis in MA-10 mouse Leydig tumor cells. Arch. Androl. 51: 285-294.
78. Lo HC, Tsai FA, Wasser SP, Yang JG, and Huang BM. (2006) Effects of ingested fruiting bodies, submerged culture biomass, and acidic polysaccharide glucuronoxylomannan of Tremella mesenterica Retz.:Fr. on glycemic responses in normal and diabetic rats. Life Sci. 78: 1957-1966.
79. Lochhead PA, Salt IP, Walker KS, Hardie DG, and Sutherland C. (2000) 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes. 49:896-903.
80. Long YC, and Zierath JR. (2006) AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Invest. 116:1776-1783.
81. Ma L, and Lin ZB. (1992) Effect of Tremella polysaccharide on IL-2 production by mouse splenocytes. Yao Xue Xue Bao. 27: 1-4.
82. Mao XL. (1998) Economic Fungi of China. Academic Press, Beijing, pp. 458
83. Maria Eugeia Frigolet Vázquez-Vela, Nimbe T, and Armando RT. (2008) White Adipose Tissue as Endocrine Organ and Its Role in Obesity. Arch. Med. Res. 39:715-728.
84. Matejkova O, Mustard KJ, Sponarova J, Flachs P, Rossmeisl M, Miksik I et al. (2004). Possible involvement of AMP-activated protein kinase in obesity resistance induced by respiratory uncoupling in white fat. FEBS Lett 569:245–248.
85. Matschinsky FM. (1990) Perspectives in Diabetes: Glucokinase as glucose sensor and metabolic signal generator in pancreatic β-cells and hepatocytes. Diabetes 39:647-652.
86. Minokoshi Y, Kim Y, Peroni O, Fryer L, Muller C, Carling D and Kahn B (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:268–269.
87. Mohamed-Ali V, Pinkney JH, and Coppacks SW. (1998) Adipose tissue as an endocrine and paracrine organ. Int. J. Obes. Relat. Metab. Disord. 22:1145-1158.
88. Mokarram N, Merchant A, Mukhatyar V, Patel G, and Bellamkonda RV. (2012) Effect of modulating macrophage phenotype on peripheral nerve repair. Biomat. 33:8790-8801.
89. Muller G, Ertl J, Gerl M, and Preibisch G. (1997) Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J. Biol. Chem. 272:10585-10593.
90. Nagaev I, and Smith U. (2001) Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochem. Biophys. Res. Commun. 285:561-564.
91. Ntambi JM, and Young-Cheul K. (2000) Adipocyte differentiation and gene expression. J. Nutr. 130(12)3122-3126.
92. Orci L, Cook WS, Ravazzola M, Wang MY, Park BH, Montesano R, and Unger RH. (2004) Rapid transformation of white adipocytes into fat-oxidizing machines. Proc. Natl. Acad. Sci. USA 101:2058–2063.
93. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, and Matsuzawa Y, (1999) Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473–2476.
94. Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, and Walsh K. (2003) Obesity, adiponectin and vascular inflammatory disease. Curr. Opin. Lipidol. 14:561–566.
95. Park H, Kaushik VK, Constant S, Prentki M, Przybytkowski E, Ruderman NB, and Saha AK. (2002) Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J. Biol. Chem. 277:32571-32577.
96. Phillips SA, Ciaraldi TP, Kong AP, Bandukwala R, Aroda V, Carter L et al. (2003). Modulation of circulating and adipose tissue adiponectin levels by antidiabetic therapy. Diabetes 52:667–674.
97. Putnam AL, Brusko TM, Lee MR, Liu W, Szot LG, Ghosh T, Atkinson MA, and Bluestone JA. (2009) Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes. 58: 652-662.
98. Rajala MW, Qi Y, Patel HR, Takahashi N, Banerjee R, Pajvani UB, Sinha MK, Gingerich RL, Scherer PE, and Ahima RS. (2004) Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes 53:1671–1679.
99. Renstrom F, Buren J, Svensson M, and Eriksson JW. (2007) Insulin resistance induced by high glucoseand high insulin precedes insulin receptor substrate 1 protein depletion in human adipocytes. Metab. Clin. Exp. 56:190-198.
100. Reshetnikov SV, Wasser SP, Nevo E, Duckman I, and Tsukor K, (2000) Medicinal value of the genus Tremella Pers. (Heterobasidiomycetes). Int. J. Med. Mushr. 2: 169-193.
101. Rosen ED, Walkey CJ, Puigserver P, and Spiegelman BM. (2000) Transcriptional regulation of adipogenesis. Genes Dev. 14:1293-1307.
102. Rotter V, Nagaev I, and Smith U. (2003) Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem. 278:45777-45784.
103. Round JA, Jacklin P, Fraser RB, Hughes RG, Mugglestone MA, and Holt RIG. (2011) Screening for gestational diabetes mellitus: cost–utility of different screening strategies based on a woman’s individual risk of disease. Diabetologia. 54: 256–263.
104. Sakoda H, Ogihara T, Anai M, Fujishiro M, Ono H, Onishi Y et al. (2002) Activation of AMPK is essential for AICARinduced glucose uptake by skeletal muscle but not adipocytes. Am. J. Physiol. Endocrinol. Metab. 282:1239–1244.
105. Salt IP, Connell JM, and Gould GW. (2000) 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulinstimulated glucose transport in 3T3-L1 adipocytes. Diabetes 49:1649–1656.
106. Saltiel AR, and Khan CR. (2001) Insulin signaling and the regulation of glucose and lipid metabolism. Nature. 414: 799-806.
107.Saltiel AR, and Pessin JE. (2002) Insulin signaling pathways in time and space. Trends Cell Biol. 12: 65-71.
108. Sandra G, Jon SO, and Gregory RS. (2010) Adipose tissue as an endocrine organ Mol. Cell. Endocrinol. 316:129–139.
109. Satoh H, Nguyen MTA, Miles PDG, Imamura T, Usui I, and Olefsky JM. (2004) Adenovirus-mediated chronic “hyper-resistinemia” leads to in vivo insulin resistance in normal rats. J. Clin. Invest. 114:224–231.
110. Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A, Considine RV, and O’Rahilly S. (2001) Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in human. Diabetes 50:2199-2202.
111. Scherer PE, Williams S, Fogliano M, Baldini G, and Lodish HF. (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270:26746-26749.
112. Schraw T, Wang ZV, Halberg N, Hawkins M, Scherer PE. (2008) Plasma adiponectin complexes have distinct biochemical characteristics. Endocrinology 149: 2270–2282.
113. Schwartz MW, Seeley RJ, Campfield LA, Burn P, and Baskin DG. (1996) Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest. 98:1101-1106.
114. Sell H, Deshaies Y, and Richard D. (2004) The brown sdipocyte:update on its metabolic role. Int. J. Biochem. Cell Biol. 36:2098-2104.
115. Senn JJ, Klover PJ, Nowak IA, and Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51:3391-3399 .
116. Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, and Mooney RA. (2003) Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J. Biol. Chem. 278:13740–13746.
117. Shapiro L, and Scherer PE. (1998) The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr. Biol. 8:335-338.
118. Shugart EC, and Umek RM. (1997) Dexamethasone signaling is required to establish the postmitotic state of adipocyte development. Cell Growth Differ. 8:1091-1098.
119. Staiger H, Kaltenbach S, Staiger K, Stefan N, Fritsche A, Guirguis A, peterfi C, Weisser M, Machicao F, Stumvoll M, and Hsring HU. (2004) Expression of adiponectin receptor mRNA in human skeletal muscle cells is related to in vivo parameters of glucose and lipid metabolism. Diabetes 53:2195-2201.
120. Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, et al. (1996).
Mammalian AMP-activated protein kinase subfamily. J. Biol. Chem. 271:611–614.
121. Stephans TW, Basinski M, Bristow PK, Bue-Valleskey JM, Burgett SG, Craft L, Hale J, Hoffmann J, Hsiung HM, Kriauciunas A, Mackellar W, Rosteck PR, Schomer B, Smith D, Tinsley FC, Zhang XY, and Heiman M. (1995) The role of neuripeptide Y in the antiobesity action of the obese gene product. Nature 377:530-535.
122. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, and Lazar MA. (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312.
123. Steppan CM, Wang J, Whiteman EL, Birnbaum MJ, and Lazar MA. (2005) Activation of SOCS-3 by resistin. Mol. Cell Biol. 25:1569–1575.
124. Thorens B, and Mueckler M. (2009) Glucose transporters in 21st century. Am. J. Physiol. Endocrinol. Metab. 298:141-145.
125. Tiikkainen M, Hakkinen AM, Korsheninnikova E, Nyman T, Makimattila S, and Yki-Jarvinen H (2004). Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes 53:2169–2176.
126. Tiziana R, Graziana L, and Elmo M. (2006) The endocrine function of adipose tissue: an update. Clin. Endocrinol. 64:355–365.
127. Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang CC, Itani SI, Lodish HF, and Ruderman NB. (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. USA 99:16309-16313.
128. Tsao TS, Burcelin R, Katz EB, Huang L, and Charron MJ. (1996) Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle. Diabetes. 45:28-36.
129. Tsao TS, Tomas E, Murrey HE, Hug C, Lee DH, Ruderman NB, Heuser JE, and Lodish HF. (2003) Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity: different oligomers activate different signal transduction pathways. J. Biol. Chem. 278:50810–50817.
130. Tsigos C, Papanicolaou DA, Kyrou I, Defensor R, Mitsiadis CS, and Chrousos GP. (1997) Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J. Clin. Endocrinol. Metab. 82:4167-4170.
131. Vuorinen-Markkola H, Koivisto VA, and Yki-Jarvinen H. (1992) Mechanisms of hyperglycemia-induced insulin resistance in whole body and skeletal muscle of type I diabetic patients. Diabetes 41:571–580.
132. Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, Hara K, Hada Y, Vasseur F, Froguel P, Kimura S, Nagai R, Kadowaki T, (2003) Impaired multimerization of human adiponectin mutants associated with diabetes: molecular structure and multimer formation of adiponectin. J. Biol. Chem. 278:40352–40363.
133. Walder K, Filippis A, Clark S, Zimmet P, and Collier GR. (1997) Leptin inhibits insulin binding in isolated rat adipocytes. J. Endocrinol. 155:5-7.
134. Wang H, Zhang H, Jia Y, Zhang Z, Craig R, Wang X, Elbein SC. (2004) Adiponectin receptor 1 gene (ADIPOR1) as a candidate for type 2 diabetes and insulin resistance. Diabetes 53:2132–2136.
135. Wang J, Liu R, Hawkins M, Barzalai N, and Rosseti L. (1998) A nutrient-sensing pathway regulates leptin gene expression muscle and fat. Nature 393:684-688.
136. Watt MJ, Dzamko N, Thomas WG, Rose-John S, Ernst M, Carling D, Kemp BE, Febbraio MA, and Steinberg GR. (2006) CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat. Med 12:541–548.
137. Way JM, Gorgun CZ, Tong Q, et al. (2001) Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. J. Biol. Chem. 276:25651-25653.
138. Winder WW and Hardie DG. (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277:1-10.
139. Woods A, Cheung PCF, Smith FC, Davison MD, Scott J, Beri RK, and Carling D. (1996a) Characterization of AMP-activated protein kinase β and γ subunits. J Biol Chem 271:10282–10290.
140. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, and Carling D. (2005). Ca2+/ calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2:21-33.
141. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D et al. (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008.
142. Woods A, Salt I, Scott J, Hardie DG, and Carling D. (1996b). The α1 and α2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett 397: 347–351.
143. Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, and Goldstein BJ. (2003) Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52:1355–1363.
144. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 8:1288-1295.
145. Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, Uchida S, Ito Y, Takakuwa K, Matsui J, Takata M, Eto K, Terauchi Y, Komeda K, Tsunoda M, et al (2003) Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. Journal of Biological Chemistry, 278:2461–2468.
146. Yan SD, Schmidt AM, Anderson GM, Zhang J, Bertt J, Zou YS, Pinsky D, and Stern D. (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation endproducts with their receptors/binding proteins. J. Biol. Chem. 269: 9889-9897.
147. Yoshioka K, Oh KB, Saito M, Nemoto Y, and Matsuoka H. (1996) Evaluation of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-Dglucose, a new fluorescent derivative of glucose, for viability assessment of yeast Candida albicans. Appl. Microbiol. Biotechnol. 46: 400– 404.
148. Zdychova J, and Komers R, (2005) Emerging role of akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiol Res. 54:1-16.
149. Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB, Wojtaszewski JF, Hirshman MF, Virkamaki A, Goodyear LJ, Kahn CR, and Kahn BB. (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med. 6:924-928.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top