(100.26.179.251) 您好!臺灣時間:2021/04/14 06:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂軒志
研究生(外文):Syuan-Jhih Lyu
論文名稱:無機聚合物工程特性及影響因素暨應用於混凝土缺陷修補研究
論文名稱(外文):A Study on Engineering Properties with Impact Factors of Geopolymer and its Application on Repairing Concrete Defects
指導教授:翁祖炘翁祖炘引用關係鄭大偉鄭大偉引用關係王泰典
口試委員:張偉國林凱隆陳昭旭黃兆龍黃燦輝
口試日期:2013-07-16
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:244
中文關鍵詞:無機聚合物實驗設計力學特性微結構特徵修補力學模式介面黏結特性
外文關鍵詞:GeopolymerDesign of ExperimentsMechanical propertiesMicrostructural characteristicsMechanics modelAdhesion
相關次數:
  • 被引用被引用:7
  • 點閱點閱:358
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
修補材料為構造物修復工程的關鍵因素,目前修補成效之評估亦無相應之準則與方法。而無機聚合物組成與混凝土相近,具低二氧化碳排放、高早強度、耐久性佳、低體積變化率、可作填充承壓材等特性,在混凝土缺陷修補方面極具發展潛力,更為近年來備受矚目之綠色環保材料。
本研究於實驗設計法之架構下,旨探討無機聚合物之影響因素、工程特性及黏結特性。研究首先利用統計學中複迴歸分析,釐清無機聚合物不同組成分間之交互作用,並掌握組成成分與微結構特徵及力學特性間之關係。爾後基於混凝土裂縫修補特性提出一簡單力學模式,並透過一系列含不同夾層傾角的黏結試驗,探求介面上之黏結特性及修補後再破壞特徵。最後配以顆粒力學個別元素法進行模擬,據以掌握無機聚合物修補混凝土缺陷後介面黏結行為。
研究結果顯示,在無機聚合物力學特性方面,影響因子以OH- (M)為主,與SiO2 (mol)有交互影響作用。OH-濃度越高無機聚合物之視凝聚力及聚合程度亦隨之增加,而OH-與SiO2搭配比例不同,可形成不同的Q4(nAl)配位結構進而造成力學特性差異。此外,無機聚合物破壞模式受聚合程度與應力狀態影響顯著,於單軸壓縮條件下呈脆性破壞特徵,圍壓上升漸轉變為略具延性之特性。在修補黏結方面,提出的力學模式,可考量無機聚合物修補混凝土缺陷後介面之黏結特性。依介面強度參數繪製之夾層試體受力破壞包絡線,可判斷不同受力狀態下之破壞模式。另透過實驗得知,以水淬高爐石添加燃煤飛灰製備之無機聚合物介面黏結力最佳,黏結介面之正向勁度與正向應力具指數之關係,整體之修補成效無論圍壓大小皆可高達95%以上。在數值模擬方面,採個別元素法可明確模擬出無機聚合物、水泥砂漿基材及修補後不同夾層傾角試體在單軸壓縮試驗條件下之力學行為及破壞形態,模擬所得結果皆吻合試驗值。本研究運用實驗設計法及統計分析方法,無論是於無機聚合物力學特性方面或數值模擬,所提出之複迴歸方程式,模式可靠度皆可達80%以上,極具參考之價值與意義。

Repair materials are key factors for structure restoration projects. Currently, however, no corresponding standards or methods exist for evaluating repair effectiveness. The formation of geopolymer is similar to concrete; it has low carbon dioxide emissions, high early strength, good durability, low volume change rate, and can be used as a pressure-bearing filler material. Geopolymer possesses great developmental potential for concrete defect repairs and has received much attention in recent years as an environmentally friendly material.
Based on the framework of experimental design, this study investigates the influence factors, engineering and adhesion properties of geopolymer. First, statistical regression analysis is used to clarify the interaction between geopolymer constituents, and to understand the relationships between compositions, microstructure characteristics and mechanical properties. Secondly, a simple mechanical model is proposed to describe the repair properties of geopolymer on concrete cracks. After a series of adhesion tests with different layered angles, the adhesion properties and re-failure features of geopolymer-concrete interface are defined. In addition, the simulations of distinct element method are utilized to grasp the interface adhesion behavior of geopolymer after repairing concrete defects.
Study results indicate that OH- (M) is the primary influential factor in geopolymer mechanical properties, and has an interaction with SiO2 (mol). As the OH- concentration increases, the geopolymer’s apparent cohesion and extent of polymerization also increased. Different proportions of OH- and SiO2 can form different Q4 (nAl) coordination structures, subsequently causing differences in mechanical properties. In addition, stress and extent of polymerizations had a significant effect on the geopolymer failure model. Under uniaxial compression conditions, geopolymer exhibited brittle fracture characteristics. As confining pressure increases it gradually changed to a slightly ductility characteristic. For repair adhesion, proposed mechanical models may consider the adhesion characteristics after repairing concrete defects with geopolymer. Plotting the stress damage envelope of layered specimens according to interface strength parameters can determine the damage model under different stress conditions. The experiments also showed that adding coal fly ash and granulated blast furnace slag to geopolymer lead to optimal interface adhesion strength. The normal stiffness of the adhesion interface and normal stress has an exponential relationship. Overall, the repair effectiveness can achieve above 95% regardless of confining pressure. For numerical simulation, the distinct element method can accurately simulate the mechanical behavior and damage pattern of specimens with different geopolymer, mortar substrate, and repair layer angles under uniaxial compression experiment conditions. The simulated results all conformed to the experiment value. This study used experimental design and statistical analysis. For geopolymer mechanical properties and numerical simulation, the proposed multiple regression equation achieved a model reliability of above 80%, which possesses reference value and significance.

中文摘要 I
英文摘要 III
誌謝 V
目錄 VII
表目錄 XI
圖目錄 XIV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目標 3
1.3 研究架構 3
1.4 研究方法與內容 5
第二章 文獻回顧 9
2.1 混凝土缺陷 9
2.1.1混凝土缺陷的種類 9
2.1.2混凝土缺陷的成因 11
2.1.3混凝土裂縫對結構物之影響 14
2.1.4混凝土結構物容許裂縫寬度之規範 17
2.2 修補材料及工法 19
2.2.1 修補材料相容性之考量 20
2.2.2 常見的修補材料 21
2.2.3 常見修補工法 23
2.2.4 國內外混凝土缺陷修補之處理對策與現況 28
2.3 無機聚合物 31
2.3.1 無機聚合物的組成 31
2.3.2 無機聚合物之反應 36
2.3.3 無機聚合物之結構 39
2.3.4 無機聚合物之結構分析 41
2.3.5 無機聚合物之相關研究 46
2.4 顆粒流分析軟體之簡介 49
2.4.1 PFC之運算原理與基本假設 49
2.4.2 PFC之接觸組成模式 50
2.4.3 微觀與宏觀力學參數之關係 53
第三章 試驗材料及製備程序 55
3.1 材料基本性質 55
3.1.1 高嶺土 55
3.1.2 水淬高爐石 57
3.1.3 燃煤飛灰 58
3.1.4 無機聚合液 59
3.1.5 預拌式無收縮灌漿料 60
3.2 樣品之製備程序 61
3.2.1 無機聚合物製備程序 61
3.2.2 水泥砂漿之製備 62
3.2.3 修補試體製備 63
3.3 試驗方法及尺寸 65
3.3.1 力學試驗 65
3.3.2 物性試驗 67
3.3.3 微結構分析 68
3.4 實驗與數值模擬代號說明 69
第四章 無機聚合物影響因素與結構特徵探討 71
4.1 無機聚合物力學特性單變數分析 75
4.1.1 SiO2/Na2O莫耳比 75
4.1.2 Total-SiO2/Al2O3莫耳比 77
4.1.3 Total-SiO2/Na2O莫耳比 80
4.1.4 綜合討論 82
4.2 無機聚合物力學特性多變數分析 85
4.2.1 單軸壓縮強度影響因素分析 85
4.2.2 變形模數影響因素分析 93
4.2.3 漿體黏度影響因素分析 100
4.2.4 綜合討論 104
4.3 結構特徵與力學特性關係之探討 107
4.3.1 力學特性 107
4.3.2 物性指數、黏度、熱傳導及超音波速 109
4.3.3 X-ray、SEM及FTIR分析 110
4.3.4 29Si及27Al NMR分析 113
4.3.5 綜合討論 116
4.4 小結 119
第五章 應力條件對無機聚合物工程特性及破壞模式之影響 121
5.1 一般物性指數與滲透特性 122
5.1.1 一般物性指數 122
5.1.2 滲透特性 123
5.1.3 孔徑分佈 125
5.2 力學特性與破壞模式 126
5.2.1 單軸壓縮強度與變形性 126
5.2.2 三軸壓縮試驗與變形性 129
5.2.3 破壞模式分析 133
5.2.4 綜合討論 135
5.3 微結構特徵分析 137
5.3.1 XRD分析 137
5.3.2 SEM分析 138
5.3.3 27Al 及29Si NMR分析 139
5.3.4 綜合討論 142
5.4 小結 144
第六章 無機聚合物與水泥砂漿黏結特性探討 145
6.1 水泥砂漿基本力學特性 145
6.1.1 水泥砂漿單軸壓縮強度 146
6.1.2 水泥砂漿三軸壓縮強度 147
6.2 無機聚合物之黏結成效 150
6.2.1 間接張應力條件 150
6.2.2 壓剪應力條件 154
6.2.3 三軸壓縮 160
6.2.4 對比材料之比較 168
6.2.5 無機聚合修補劑價格評估 170
6.3 力學模式與介面力學特性參數 172
6.3.1 力學模式 172
6.3.2 統計分析之程序與結果 173
6.3.3 黏結介面強度參數 178
6.3.4 黏結介面變形參數 181
6.3.5 綜合討論 183
6.4 小結 186
第七章 數值模擬分析 187
7.1 敏感因子分析 187
7.1.1 幾何參數 188
7.1.2 顆粒參數 191
7.1.3 鍵結參數 193
7.1.4 微觀尺度參數與宏觀尺度力學特性參數迴歸方程式 197
7.2單一材料模擬 200
7.2.1 水泥砂漿基材 200
7.2.2 無機聚合物SGP 201
7.3 夾層複合材料模擬 203
第八章 結論與建議 207
8.1 結論 207
8.2 建議 209
參考文獻 211
附錄:以水淬高爐石添加燃煤飛灰製備無機聚合物之特性分析 223
口試審查意見回覆表 235
作者簡介 241

1.Babushkin V.I., Matveyev G.M., Mchedlov-Petrossyan O.P., (1985) Thermodynamics of Silicates, Berlin: Springer-Verlag.
2.Bakharev T., Sanjayan J.G., (2002) Alkali-activated slag concrete: durability in the aggressive environment, Geopolumer 2002 Internationl Conference, Melbourne, Australia.
3.Balaguru P.N., Kurtz S., Rudolph J., (1997) Geopolymer for repair and rehabilitation of reinforced concrete beams, Structural Engineering Journal, vol. 38, pp. 35-42.
4.Barsoum M.W., Ganguly A., Hug G., (2006) Microstructural Evidence of Reconstituted Limestone Blocks in the Great Pyramids of Egypt, J. Am. Ceram. Soc., vol. 89, pp. 3788–3796.
5.Bell J., Gordon M., Kriven W., (2008) Geopolymer chemistry and applications, Framce: Institut Geopolymere, pp.342-343.
6.Brough A.R., Atkinson A., (2002) Sodium silicate-based, alkali-activated slag mortars PartⅠ. Strength, hydration and microstructure, Cement and Concrete Research, vol. 32, pp.865-879.
7.Chindaprasirt P., Jaturapitakkul C., Chalee W., Rattanasak U., (2009) Comparative study on the characteristics of fly ash and bottom ash geopolymers, Waste Mnagement, vol. 29, pp. 539-543.
8.Cioffi R., Mafucci L., Santoro L., (2003) Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue, Resources, Conservation & Recycling, vol. 40, pp. 27-38.
9.Comrie D.C., Davidovits J., (1998) Long term durability of hazardous toxic and nuclear waste disposals, Geopolymer 88, France, pp. 125-134.
10.Cundall, P. A. and Strack, O. D. L., (1979) A discrete numerical model for granular assemblies, Geotechnique, vol. 29, pp. 47-65.
11.Davidovits J., (1984) X-ray analysis and X-ray diffraction of casting stones from the pyramids of Egypt and the limestone of the associated quarries, in: R. David (Ed.) Science in Egyptology, Proceedings of the Science in Egyptology Symposia, University Press, Manchester UK, Manchester, pp. 511-520.
12.Davidovits J., (1989) Geopolymers and geopolymeric materials, Journal of Thermal Analysis, vol. 35, pp.429-441.
13.Davidovits J., (1991) Geopolymers : Inorganic polymeric new materials, Journal of Thermal Analysis, vol.37, pp. 1633-1656.
14.Davidovits J., (1994) Global warming impact on the cement and aggregates industries, Published in World Resource Review, vol. 6(2), pp. 263-278.
15.Davidovits J., (1999) Chemistry of geopolymeric systems terminology, In: Proceedings of Geopolymer”99 Second International Conference, France, pp. 9-37.
16.Davidovits J., (2008) Geopolymer Chemistry & Application, France: Institute Geopolymere, pp. 61-70.
17.Davidovits J., (2008) Geopolymer chemistry & Application, France: Institute Geopolymere, pp. 100.
18.Davidovits J., (2008) Geopolymer Chemistry & Applications, France Institute Géopolymère: Saint-Quentin.
19.Duxson P., Lukey G.C., van Deventer J.S.J., (2006) Evolution of gel structure during thermal processing of Na-geopolymer gels, Langmuir, vol. 22(21), pp. 8750-8757.
20.Duxson P., Provis J.L., (2008) Designing Precursors for Geopolymer Cements, Journal of the American Ceramic Society, vol. 91, pp. 3864-3869.
21.Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., Van Deventer J.S.J., (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids and Surfaces A: Physicochem and Engineering Aspects, vol. 269, pp. 47-58.
22.Duxson P., Provis J.L., Lukey G.C., Separovic F., van Deventer J.S.J, (2005) 29Si NMR study of structural ordering in aluminosilicate geopolymer gels, Langmuir, vol. 21, pp. 3028-3096.
23.Eduardo N.B.S. Julio, Fernando A.B. Branco, Vıtor D. Silva, Jorge F. Lourenco, (2006), Influence of added concrete compressive strength on adhesion to an existing concrete substrate, Building and Environment, vol. 41, pp. 1934-1939.
24.Fernández-Jiménez A., Palomo A., (2004) Alkali-activated fly ash concrete: alternative material for the precast industry, http://www.geopolymer.org.
25.Fernando P.T., Joao C.G., Said J., (2008) Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment, Construction and Building Materials, vol. 22, pp. 154-161.
26.García-Lodeiro I., Fernández-Jiménez A., Blanco M.T., Palomo A., (2008) FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H, Journal of Sol-Gel Science and Technology, vol.45, pp. 63-72.
27.Hardjito D., Wallah S.E., Sumajouw D.M.J., Rangan B.V., (2004) On the development of Fly ash-basedgeopolymer concrete, Aci Materials Journal, vol. 101(6), pp 467-472.
28.Iler RK., (1979) The Chemistry of Silica, New York: Solubility, John Wiley & Sons.
29.Itasca Consulting Group Inc., (2002) PFC2D (Particle Flow Code in 2 Dimensions), Version 3.0. Minneapolis, MN: ICG.
30.Kaps C., Buchwald A. (2002) Property controlling influences on the generation of geopolymeric based on clay, In: Geopolymer 2002 International Conference, Melbourne, Australia, CD-ROM.
31.Komljenović M., Baščarević Z., Bradić V., (2010) Mechanical and microstructural properties of alkali-activated fly ash geopolymers, Journal of Hazardous Materials, vol. 181, pp. 35-42.
32.Lecomte I., Henrist C., Liégeois M., Maseri F., Rulmont A., Cloots R., (2006) Micro-structural comparison between geopolymers, alkali-activated slag cement and Portland cement, Journal of the European Ceramic Society, vol. 26, pp. 3789-3797.
33.Lee W.K.W., van Deventer J.S.J., (2004) The interface between natural siliceous aggregates and geopolymers, Cement and Concrete Research, vol. 34, pp. 195-206.
34.Lyu S. J, Wang T. T., Cheng T. W., Ueng T. H. (2013) Main factors affecting mechanical characteristics of geopolymer revealed by experimental design and associated statistical analysis, Constr. Build. Mater., vol 43, pp. 589-597.
35.MacKenzie K.J.D., Smith M.E., (2008) Multinuclear Solid-State NMR of Inorganic Materials, Oxford; New York: Pergamon, pp. 273.
36.Momayez A., Ehsami M.R., Ramezanianpour A.A., Rajaie H., (2005) Comparison of methods for evaluating bond strength between concrete substrate and repair materials, Cement and Concrete Research, vol. 35, pp. 748-757.
37.Pacheco-Torgal F., Castro-Gomes J.P., Jalali Said, (2008) Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment, Construction and Building Materials, vol. 22(3), pp. 154-161.
38.Panias D., Giannopoulou I.P., Perraki T., (2007) Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers, Colloids and Surfaces A: Physicochem Engineering Aspects, vol. 301, pp. 246-254.
39.Pattnaik R.P., Rangaraju P.R., (2007) Analysis of compatibility between repair material and substrate concrete using simple beam with third point loading, J. Mater. Civ. Eng., vol. 19(12), pp. 1060-1069.
40.Phair J.W., Smith J.D., van Deventer J.S.J, (2003) Characteristics of aluminosilicate hydrogels related to commercial Geopolymers, Materials Letters, vol.57, pp. 4356-4367.
41.Phair J.W., van Deventer J.S.J., (2001) Effect of silicate activator pH on the leaching and material characteristic of waste-based inorganic polymers, Mineral Engineering, vol. 14(3), pp. 289-304.
42.Phair J.W., van Deventer J.S.J., Smith J.D., (2000) Mechanism of polysialation in theincorporation of zirconia into fly ash-based geopolymers, Ind. Eng. Chem. Res, vol. 39, pp. 2925-2934.
43.Potyondy D.O., Cundall P.A., (2004) A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci., vol. 41, pp. 1329–1364.
44.Provis J.L., Duxson P., Lukey G.C., Separovic F., Kriven W.M., van Deventer J.S.J., (2005) Modeling Speciation in Highly Concentrated Alkaline Silicate Solutions, Ind. Eng. Chem. Res., vol. 44, pp 8899-8908.
45.Ress C.A., Provis J.L., Lukey G.C., van Deventer J.S.J., (2007) Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging, languir, vol. 23, pp. 8170-8179.
46.Rovnanik P., (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer, Construction and Building Materials, vol. 24, pp. 1176-1183.
47.Sakulich A.R., Anderson E., Schauer C.L., Barsoum M.W., (2009) Influence of Si:Al ratio on the microstructural and mechanical properties of a fine-limestone aggregate alkali-activated slag concrete, Materials and Structures, vol. 44(7), pp. 1025-1035.
48.Singh P.S., Trigg M., Burgar I., Bastow T., (2005) Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR”, Materials Science and Engineering A, vol. 396, pp.392-402.
49.Swanepoel J.C., Strydom C.A., (2002) Utilisation of fly ash in a geopolymeric materic, Applied Geochemistry, vol. 17(8), pp. 1143-1148.
50.Tailby J., MacKenzie K.J.D., (2010) Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals, Cement and Concrete Research, vol. 40, pp. 787–794.
51.Teixeira-Pinto A., Vieira E., (2005) Repairing of damaged stone in monuments and stone buildings, Geopolymer: green chemistry and sustainable development solutions , pp.173-176.
52.Temuujin J., van Riessen A., (2009) Effect of fly ash preliminary calcination on the properties of geopolymer, Journal of Hazardous Materials, vol. 164, pp. 634-639.
53.Ueng T. H., Lyu S. J., Chu H. W., Lee H. H., Wang T. T., (2012) Adhesion at interface of geopolymer and cement mortar under compression: an experimental study, Constr. Build. Mater., vol. 35, pp. 204-210.
54.van Deventer J.S.J., Provis J.L., Duxson P., Lukey G.C., (2007) Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products, Journal of Hazardous Materials, vol. 139, pp.506-513.
55.van Jaarsveld J.G.S., van Derventer J.S.J., Lorenzen L., (1997) The potentiall use of geopolymeric materials to immobolise toxic metals: Part Ι Theory and applications, Minerals Engineering, vol. 10, pp.659-669.
56.Verdolotti L., Iannace S., Lavorgna M., Lamanna R., (2008) Geopolymerization reaction to consolidate incoherent pozzolanic soil, J. Mater. Sci., vol. 43(3), pp. 865-73.
57.Wang Y.C., Yin X.C., Ke K.J., Xia M.F., Peng, K.Y., (2000) Numerical simulation of rock failure and earthquake process on mesoscopic scale. Pure Applied Geophysics, vol. 157, pp. 1905–1925.
58.Weng L., Sagoe-Crentsil K., (2007) Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I. Low Si/Al ratio systems, J. Mater. Sci., vol. 42(9), pp. 2997-3006.
59.Xu H., Van Deventer J.S.J., (2000) The geopolymerisation of alumino-silicate minerals, Int. J. Miner. Process, vol. 59, pp. 247-266.
60.Xu H., Van Deventer J.S.J., Lukey G.C., (2001) Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures, International Engineering Chemical Research, vol. 40, pp. 3749-3756.
61.Yip C.K., Lukey G.C., van Deventer J.S.J., (2005) The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cement and Concrete Research, vol. 35, pp. 1688-1697.
62.Zhang Y., Sun W., Li Z., (2010) Composition design and microstructural characterization of calcined kaolin-based geopolymer cement, Applied Clay Science, vol. 47, pp. 271-275.
63.Zhang Y., Wei S., Chen Q., Chen L., (2007) Synthesis and heavy metal immobilization behaviors of slag based geopolymer, Journal of Hazardous Materials, vol. 143, pp. 206-213.
64.Zhao Q., Nair B., Rahimian T., Balaguru P., (2007) Novel geopolymer based composites with enhanced ductility, J. Mater. Si., vol 42, pp 3131-3137
65.中國土木水利工程學會 (2005),既有混凝土結構物維修及補強技術手冊,科技圖書。
66.內政部 (2004),鋼筋混凝土建築結構桿件補強準則之研擬,內政部建築研究所研究報告
67.王旻,馮鵬,葉列平,覃維祖 (2004),用於纖維片材加固混凝土結構的無機黏結材料-地聚物,2004年第三屆全國FRP 及其工程應用學術交流會論文集,第16-20頁。
68.王國榮 (2007),環氧樹脂修補破壞混凝土之成效研究,碩士論文,國立台成功大學土木工程學系,台北。
69.石正義、林文祺 (1990),建築物龜裂-防範與對策,詹氏書局,第174-175頁
70.朱秀雯 (2010),無機聚合物與水泥砂漿黏結特性之實驗與數值探討,碩士論文,國立臺北科技大學資源工程研究所,台北。
71.朱秀雯、呂軒志、李宏輝、王泰典、翁祖炘 (2009),個別元素法應用於模擬無機聚合物力學特性之探討,第三屆 資源工程研討會論文集,第2-73~77頁。
72.朱秀雯、李宏輝、王泰典、翁祖炘 (2011),無機聚合物與水泥砂漿界面黏結特性之探討,鑛冶,第55卷,第3期,第30-35頁。
73.朱秀雯、鄭大偉、黃燦輝、薛文城、黃中杰 (2009),無機聚合物修補水泥砂漿裂縫之力學機制探討,第八屆海峽兩岸隧道與地下工程學術與技術研討會論文集,第B11-1~ B11-8頁。
74.何建紅、鍾良紅 (2005),混凝土裂縫的成因、預防及處理,人民長江,第36卷,第6期,第33-35頁。
75.吳卓夫、陳冠霖 (1992),鋼筋混凝土龜裂調查、修護、補強模式,建築技術,第3卷,第234-252頁
76.吳的恭、廖肇昌、鄭振定、賴修益、顏志欽、孫金湖、游輝泓、翁慶發、郭永銘 (2010),混凝土工程監造技術指引,財團法人中興工程顧問社,第116-167頁。
77.吳冠龍 (2008),以變高嶺石製成無機聚合樹脂應用於混凝土裂縫修補之研究,碩士論文,國立臺北科技大學資源工程研究所,台北。
78.吳建興 (2003),活性粉混凝土補強混凝土構件與耐久性能之測試研究,碩士論文,朝陽科技大學營建工程系,台中。
79.吳夢嚴 (2003),混凝土裂縫修補後強度及破裂韌性之研究-活性粉質砂漿及無收縮水泥砂漿,碩士論文,朝陽科技大學營建工程系,台中。
80.呂軒志、王泰典、鄭大偉、翁祖炘 (2011),無機聚合物力學特性與結構特徵之關係探討,第一屆兩岸/第五屆資源工程研討會,台南,第D31-D36頁。
81.呂軒志、王泰典、鄭大偉、翁祖炘 (2012),以實驗設計法探討無機聚合物力學特性之影響因素,台灣鑛業,第64卷,第2期,第37-48頁。
82.呂軒志、蕭宇翔、王泰典、鄭大偉、翁祖炘 (2008),無機聚合物在混凝土裂縫修補應用之探討,2008岩盤工程研討會論文集,第535-543頁。
83.呂軒志、蕭宇翔、王泰典、鄭大偉、翁祖炘 (2012),不同應力狀態下無機聚合物的破壞模式與力學特性研究,礦冶,第56卷,第4期,第123-132頁。
84.李有豐、林安彥 (2000),橋梁檢測評估與補強,全華圖書公司。
85.李宏輝 (2008),砂岩力學行為之微觀機制-以個別元素法探討,博士論文,國立台灣大學土木工程學系,台北。
86.李勇義 (2007),混凝土裂縫成因分析,安徽水利水電職業技術學院學報,第7卷,第2期,第58-60頁。
87.李政勳 (2010),添加水溶性高分子對無機聚合物特性影響之研究,碩士論文,國立臺北科技大學資源工程研究所碩士班,台北。
88.林平全 (2001),水淬高爐石產品開發暨推廣應用,永續產業資訊,第8卷,第36-45頁。
89.林孟曄 (2006),利用燃煤底灰製成無機聚合材料之研究,碩士論文,國立台北科技大學材料及資源工程系(所),台北。
90.林澄燦 (1986),混凝土之裂縫,結構工程,第1卷,第4期,第53-60 頁。
91.羋振明,高忠愛,吳天寶,祁夢蘭 (1995),廢棄物處理技術,科技圖書股份有限公司,第285-293頁。
92.柯翰勝 (2011),低二氧化碳排放的無機聚合綠色水泥開發研究,碩士論文,國立臺北科技大學資源工程研究所,台北。
93.徐耀賜、茍昌煥、吳東昇 (1999),混凝土橋樑檢測時常見之結構損傷模式(一),現代營建,第229期,第11-20頁。
94.徐耀賜、茍昌煥、吳東昇 (1999),混凝土橋樑檢測時常見之結構損傷模式(三),現代營建,第231 期,第47-56 頁。
95.張文華 (2005),以燃煤飛灰製成無機聚合樹脂應用於混凝土補強之可行性研究,碩士論文,國立台北科技大學材料及資源工程系,台北。
96.張雲海、趙忠心 (2007),混凝土裂縫與修補材料研究,平原大學學報,第24卷,第5期,第128-130頁。
97.曹德光,蘇達根,楊占印,宋國胜(2004),偏高嶺石的微觀結構與鍵合反應能力,礦物學報,第24卷,第4期,第366-372頁。
98.陳信安 (2012),無機聚合技術應用於綠色水泥及綠色混凝土之研究 ,碩士論文,國立臺北科技大學資源工程研究所,台北。
99.陳星諺、呂軒志、王泰典、翁祖炘 (2012),無機聚合物微觀孔隙與滲透特性之試驗探討,101年中國礦冶工程年會,第157頁。
100.陳秋艷、那琼 (2004),偏高嶺土在我國的潛在應用,礦業研究與發展,第24卷,第4期,第31-38頁。
101.陳振川、張光甫 (1999),橋樑混凝土結構施工品質問題檢測診斷與處理,結構物破壞原因探討與處置,台灣營建研究院,第13-46頁。
102.陳清華 (2001),混凝土結構物植筋補強之基礎研究,碩士論文,國立中央大學土木工程研究所,桃園。
103.陳德原 (2004),品質不良之混凝土劣化後基本性質及修補後破裂性之研究,碩士論文,朝陽科技大學營建工程系,台中。
104.湛淵源、黃兆龍、郭金祥、林中玉 (2002),地震後結構體修補材料耐久性之探討,應用於土木結構之耐震材料研發期中研究成果論文集,第7-1~7-38 頁。
105.楊逸詠、江永清、吳金能 (1998),鋼筋混凝土建築物龜裂理論與實際,詹式書局,第34-52頁。
106.楊順存、王燁、謝劍利、李世達 (2004),混凝土裂縫的鑑別及處理原則,西部探礦技術,第3期,第165-166頁。
107.劉名昱 (1995),混凝土之裂縫,水利,第5期,第131-136頁。
108.鄭大偉 (2010),無機聚合技術的發展應用及回顧,礦冶,第54卷,第1期,第141-157頁。
109.蕭遠智 (2002),鹼活化電弧爐還原碴之水化反應特性,碩士論文,國立海洋大學河海工程學系,基隆。
110.鋼筋混凝土結構修復補強設計參考手冊 (1998),中華民國結構工程技師全國聯合公會編著。
111.戴于盛 (2013),無機聚合綠色水泥之應用開發研究,碩士論文,國立臺北科技大學資源工程研究所,台北。
112.戴詩潔 (2005),高嶺石鋁矽酸鹽聚合材料之研究,碩士論文,國立臺北科技大學材料及資源工程系(所),台北。
113.謝明璋 (2006),Epoxy與PMMA修復混凝土裂縫後之疲勞行為研究,碩士論文,朝陽科技大學營建工程系,台中。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔