跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 19:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾漢璋
研究生(外文):Han-Chang Chung
論文名稱:以多目標規劃法建構模糊迴歸模型
論文名稱(外文):Constructing the Fuzzy Regression Model by Multi-Objective Programming
指導教授:劉建浩劉建浩引用關係
口試委員:蔡介元車振華
口試日期:2013-06-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理系碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:76
中文關鍵詞:模糊迴歸二次規劃法多目標規劃法
外文關鍵詞:Fuzzy RegressionQuadratic ProgrammingMulti-Objective Programming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統迴歸分析是一種重要的分析工具,能夠協助決策者了解自變數與因變數之間的因果邏輯關係,但考量到真實社會存在著許多不確定性的現象,進而發展出模糊迴歸分析法 (Fuzzy Regression),能夠更貼近地分析存在模糊或不確定性的真實社會問題。原始的模糊迴歸分析法會因為觀測值的個數增加時,迴歸係數的模糊度會加大,致使因變數估計值的展度變大,產生迴歸模型之預測準確度下降的問題。因此為了以提升整個模型準確度,本研究以多目標規劃法 (Multi-objective Programming)的數學模式求解二次規劃法 (Quadratic Programming)之模糊迴歸模型,其中考慮了最小平方集中趨勢 (The Property of Central Tendency in Least Squares)、模楜迴歸的可能性質 (The possibilistic Property in Fuzzy Regression)與配適度 (Fitness)作為目標式。採用二次規劃法於模糊迴歸分析中,是由於二次規劃法相較於線性規劃法會有更多的展度 (Spread)係數,且能夠在模糊迴歸中整合集中趨勢 (Integrating Central Tendency)和模糊迴歸的可能性質 (Possibilistic Property of Fuzzy Regression);其中結合多目標規劃的優點是可考慮對於多個目標衝突時的權衡取捨 (Trade-Off),以提供決策者更有效地預測不確定性的現象。最後本論文透過三個案例進行實證研究,研究結果顯示此一模式確實能夠改善傳統迴歸的缺點。

The traditional regression analysis is an important analysis tool, it can help the decision makers to know the relationship between the dependent and independant variables. The real world exists a lot of uncertainty, therefore the fuzzy regression is develope. Fuzzy regression can be used to analyze the social problems that exist fuzziness or uncertainty. Original fuzzy regression analysis increases the fuzziness when the number of the observed data increases that causing the spread of estimated value increases, and the forecasting accuracy of fuzzy regression model decreasing. In order to improve the entire model accuracy, this study uses multi-objective programming in quadratic programming of fuzzy regression model, considering the property of central tendency in least squares, the possibilistic property in fuzzy regression and fitness of the model. Comparing with linear programming, the quadratic programming can give more diverse spread coefficient. So this study uses quadratic programming in the interval regression analysis. And in the interval regression that integrating central tendency and possibilistic property of fuzzy regression, combining with multi-objective programming that considers how to trade-off multiple objectives. Providing the decision makers effectively forecast the uncertain phenomenon. Finally, this study uses three empirical examples to prove the usefulness and efficiency. The research results show that the fuzzy regression is able to improve the tradition regression defects.

目錄

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 3
1.3研究方法 4
1.4研究架構與流程 4
第二章 文獻探討 6
2.1模糊迴歸分析 6
2.2多目標規劃法 14
第三章 研究方法 20
3.1模糊迴歸模式之建構 20
3.1.1 二次模糊迴歸模式 21
3.1.2 二次規劃法整合可能性和必要性模式 22
3.1.3 配適度 25
3.2模糊多目標規劃 26
3.3結合多目標與模糊迴歸分析 29
3.3.1模糊迴歸分析之單目標規劃問題 29
3.3.2多目標規劃之模糊迴歸分析 30
第四章 例題演算與分析 34
4.1例題分析 34
4.1.1案例一 34
4.1.2案例二 40
4.1.3案例三 46
4.2討論 49
第五章 結論與建議 51
5.1結論 51
5.2建議 53
參考文獻 55
附錄
A 線性模糊迴歸模型 61
B 二次模糊迴歸模型 63
C 集中趨勢、模糊迴歸可能性質、配適度三者想上界值與下界值 65
D 多目標規劃法建構糊迴歸模型 71


表目錄

表2.1 模糊迴歸分析相關研究文獻整理 13
表2.2 傳統多目標求解方法 16
表2.3 多目標規劃相關研究文獻整理 18
表3.1 多目標規劃償付表(payoff table) 27
表4.1 日本房屋售價之數據 34
表4.2 線性模糊迴歸係數之參數 35
表4.3 二次模糊迴歸係數之參數 36
表4.4 各目標之理想上界值與下界值 37
表4.5 多目標規劃法建構模糊迴歸模型之模糊係數 38
表4.6 各模型之模糊係數比較表 39
表4.7 Tanka and Lee (1998)二次規劃法建構區間模糊迴歸模型之數據 41
表4.8 二次規劃法整合可能性和必要性模式係數之參數 41
表4.9 配適度數據 42
表4.10 各目標之理想上界值與下界值 42
表4.11 多目標規劃法建構模糊迴歸模型係數之參數 43
表4.12 配適度數據 43
表4.13 模糊迴歸的可能性質比較表 45
表4.14 各品牌鞋子之獲利額數據 46
表4.15 線性模糊迴歸係數之參數 47
表4.16 二次模糊迴歸係數之參數 47
表4.17 各目標之理想上界值與下界值 47
表4.18 多目標規劃法建構模糊迴歸模型係數之參數 47


圖目錄

圖1.1 研究流程圖 5
圖3.1 可能性模型Y*(xj),必要性模型Y*(xj)和給定的區間Yj 23
圖3.2 目標式隸屬函數圖 28
圖4.1 三種模型之預測區間範圍 39
圖4.2 三種模型之單點預測區間範圍 40
圖4.3 兩種求解方法之可能性與必要性模型 44


李文龍,譚家華 (2002),「西江集裝箱船主要參數的回歸分析與船型優化」,Marine Technology,第3期。
李曉燕,張曙,余燈廣 (2006),「三维打印成形粉末配方的優化設計」,Mechanical Science and Technology,第25卷,第11期。
夏正斌,涂偉萍,陳煥欽 (2003),「均匀設計在丙烯酸樹脂合成中的應用」,Journal of Chemical Engineering of Chinese Universities,第17卷,第1期。
張乃斌 (1997),「環境數學系統優化原理」,《新雅出版社,高雄》。
程國柱,斐玉龍,池利兵 (2009),「基於汽車行駛廣義費用最小的高速公路最高車速限制方法」,Journal of Jilin University (Engineering and Technology Edition),第39卷,第4期。
Azadeh, A., Khakestani, M., Saberi, M. (2009), "A flexible fuzzy regression algorithm for forecasting oil consumption estimation", Energy Policy, 39(12): 5567-5579.
Bellman, R. E. and Zadeh, L. A. (1970), "Decision making in a fuzzy environment", Management Science, 17(3): 141-164.
Berry-Stolzle, T. R., Koissi, M. C. and Shapiro, A. F. (2010), "Detecting fuzzy relationships in regression models: The case of insurer solvency surveillance in Germany", Mathematics and Economics, 46: 554-567.
Chang, P. T. and Lee, E. S. (1996), "A generalized fuzzy weighted least-squares regression", Fuzzy Sets and Systems, 82: 289-298.
Chang, Y. H. (2001), "Hybrid fuzzy least-squares regression analysis and its reliability measures", Fuzzy Sets and Systems, 119: 225-246.
Chang, Y. H. and Ayyub, B. M. (2001), "Fuzzy regression methods - a comparative assessment", Fuzzy Sets and Systems, 119: 187-203.
Chen, C. B. and Klein, C. M. (1997), "A simple approach to ranking a group of aggregated fuzzy utilities", IEEE Transaction on Systems, Man and Cybernetics, Part B: Cybernetics, 27(1): 26-35.
Chen, S. J. and Hwang, C. L. (1992), "Fuzzy Multiple Attribute Decision Making", Springer-Verlag, New York.
Diamond, P. (1988), "Fuzzy least squares", Information Sciences, 46: 141-157.
Goicolchon, A., Hansen, D.R. and Duckstein, L. (1982), "Multi-objective Decision Analysis with Engineering and Business Application John Wiley & Sons", New York.
Hladik, M. and Cerny, M. (2012), "Interval regression by tolerance analysis approach", Fuzzy Sets and Systems, 193: 85-107.
Hung, W. L. and Yang, M. S. (2006), "An omission approach for detecting outliers in fuzzy regression models", Fuzzy Sets and Systems, 157(23): 3109-3122.
Hwung, C. L. and Yoon, K. (1981), "Multiple attribute decision making: methods and applications: a state-of-the-art-survey", Springer-Verlag.
Imoto, S., Yabuuchi, Y. and Watada, J. (2008), "Fuzzy regression model of R&D project evaluation", Applied Soft Computing Journal, 8(3): 1266-1273.
Ishibuchi, H. and Tanaka, H. (1992), "Fuzzy regression analysis using neural networks", Fuzzy Sets and Systems, 50(3): 257-265.
Jana, C. and Chattopadhyay, R. N. (2004), "Block level energy planning for domestic lighting—a multi-objective fuzzy linear programming approach", Energy, 29: 1819-1829.
Kao, C. and Chyu C. L. (2002), "A fuzzy linear regression model with better explanatory power", Fuzzy Sets and Systems, 126(3): 401-409.
Kao, C. and Chyu C. L. (2003), "Least-squares estimates in fuzzy regression analysis", European Journal of Operational Research, 148(2): 426-435.
Kim, B. and Bishu R. R. (1998), "Evaluation of fuzzy linear regression models by comparing membership functions", Fuzzy Sets and Systems, 100(1): 343-352.
Kim, K. J., Moskowitz, H. and Koksalan, M. (1996), "Fuzzy versus statistical linear regression", European Journal of Operational Research, 92: 417-434.
Lee, H. T. and Chen, S. H. (2001), "Fuzzy regression model with fuzzy input and output data for manpower forecasting", Fuzzy Sets and Systems, 119: 205-213.
Li, J., Tang, L., Sun, Z. and Wu, D. (2011), "Oil-importing optimal decision considering country risk with extreme events : A multi-objective programming approach", Computers & Operations Research.
Lu, J. and Wang, R. (2009), "An enhanced fuzzy linear regression model with more flexible spreads", Fuzzy Sets and Systems, 160(17): 2505-2523.
Ma, M., Friedman, M. and Kandel, A. (1997), "General fuzzy least squares", Fuzzy Sets and Systems, 88(1): 107-118.
Moghaddam, R. T., Javadi, B., Jolai, F. and Ghodratnama, A. (2010), "The use of a fuzzy multi-objective linear programming for solving a multi-objective single-machine scheduling problem", Applied Soft Computing Journal, 10(3): 919-925.
Moskowitz, H. and Kim, K. (1993), "On assessing the h value in fuzzy linear regression", Fuzzy Sets and Systems, 58(3): 303-327.
Nasrabadi, M. M., Nasrabadi, E. and Nasrabady, A. R. (2005), "Fuzzy linear regression analysis : a multi-objective programming approach", Applied Mathematics and Computation, 163(1): 245-251.
Peters, G. (1994), "Fuzzy linear regression with fuzzy intervals", Fuzzy Sets and Systems, 63(1): 45-55.
Ramli, A. A., Watada, J. and Pedrycz, W. (2011), "Possibilistic regression analysis of influential factors for occupational health and safety management systems", Satety Science, 49(8): 1110-1117.
Redden, D. T. and Woodall, W. H. (1994), "Properties of certain fuzzy linear regression methods", Fuzzy Sets and Systems, 64(3): 361-375.
Redden, D. T. and Woodall, W. H. (1996), "Further examination of fuzzy linear Regression", Fuzzy Sets and Systems, 79(2): 203-211.
Roh, S. B., Ahn, T. C. and Pedrycz, W. (2012), "Fuzzy linear regression based on Polynomial Neural Networks", Expert Systems with Applications, 39(10): 8909-8928.
Sakawa, M. and Yano, H. (1992), "Multiobjective fuzzy linear regression analysis for fuzzy input-output data", Fuzzy Sets and Systems, 47(2): 173-181.
Sanchez, J. A. (2006), "Calculating insurance claim reserves with fuzzy regression", Fuzzy Sets and Systems, 157(23): 3091-3108.
Sanchez, J. A. and Gomez, A. T. (2004), "Estimating a fuzzy term structure of interest rates using fuzzy regression techniques", European Journal of Operational Research, 154(3): 804-818.
Savic, D. and Pedrycz, W. (1991), "Evaluation of fuzzy linear regression models", Fuzzy Sets and Systems, 39(1): 51-63.
Sener, Z. and Karsak, E. E. (2011), "A combined fuzzy linear regression and fuzzy multiple objective programming approach for setting target levels in quality function deployment", Expert Systems with Applications, 38(4): 3015-3022.
Shaw, K., Shankar, R., Yadav, S. S. and Thakur, L. S. (2012), "Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain", Expert Systems with Applications, 39(9): 8182-8192.
Silva, D. and Nakata, T. (2009), "Multi-objective assessment of rural electrification in remote areas with poverty considerations", Energy Policy, 37(8): 3096-3108.
Tanaka, H. (1987), "Fuzzy data analysis by possibilistic linear models", Fuzzy Sets and Systems, 24(3): 363-375.
Tanaka, H. and Lee, H. (1998), "Interval regression analysis by quadratic programming approach", Fuzzy Systems, 6(4): 473-481.
Tanaka, H. and Lee, H. (1999), "Exponential possibility regression analysis by identification method of possibilistic coefficients", Fuzzy Sets and Systems, 106(2): 155-165.
Tanaka, H. and Watada, J. (1988), "Possibilistic linear systems and their application to the linear regression model", Fuzzy Sets and Systems, 27(3): 275-289.
Tanaka, H., Okuda, T. and Asai, K. (1974), "On fuzzy mathematical programming", Journal of Cybernetics, 3(4): 37-46.
Tanaka, H., Uegima, S. and Asai, K. (1982), "Linear regression analysis with fuzzy model", IEEE Transactions on Systems, Man and Cybernetics, 12(6): 903-907.
Wang, H. F. and Tsaur, R. C. (2000), "Insight of a fuzzy regression model", Fuzzy Sets and Systems, 112(3): 355-369.
Wu, B. and Tseng, N. F. (2002), "A new approach to fuzzy regression models with application to business cycle analysis", Fuzzy Sets and Systems, 130(1): 33-42.
Wu, D. D., Zhang, Y., Wu, D. and Olson, D. L. (2010), "Fuzzy multi-objective programming for supplier selection and risk modeling : A possibility approach", European Journal of Operational Research, 200(3): 774-787.
Xu, R. (1997), "S-curve regression model in fuzzy environment", Fuzzy Sets and Systems, 90(3): 317-326.
Yang, M. S. and Ko, C. H. (1996), "On a class of fuzzy c-numbers clustering procedures for fuzzy data", Fuzzy Sets and Systems, 84(1): 49-60.
Yang, M. S. and Lin, T. S. (2002), "Fuzzy least-squares linear regression analysis for fuzzy input–output data", Fuzzy Sets and Systems, 126(3): 389-399.
Yen, K. K., Ghoshray, S. and Roig, G. (1999), "A linear regression model using triangular fuzzy number coefficients", Fuzzy Sets and Systems, 106(2): 167-177.
Zadeh, L. A. (1965), "Fuzzy set", Information and Control, 8: 338-353.
Zeleny, M. (1982), "Multiple Criteria Decision Making", McGrew-Hill, New York.
Zeng, X., Kang, S., Li, F., Zhang, L. and Guo, P. (2010), "Fuzzy multi-objective linear programming applying to crop area planning", Agricultural Water Management, 98(1): 134-142.
Zimmermann, H. J. (1978), "Fuzzy Programming and Linear Programming with Several Objective Functions", Fuzzy Sets and Systems, 1(1): 45-55.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top