(3.235.41.241) 您好!臺灣時間:2021/04/11 20:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王友隆
研究生(外文):Yu-Lung Wang
論文名稱:利用加速壽命試驗預測DRAM於超頻使用環境下之可靠度
論文名稱(外文):Using ALT to Predict the Reliability of the DRAM Product under Overclocking Environment
指導教授:黃乾怡黃乾怡引用關係
口試委員:楊昌哲葉繼豪
口試日期:2013-06-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理系碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:51
中文關鍵詞:記憶體超頻活化能阿氏模型加速壽命試驗米勒定律
外文關鍵詞:memoryoverclockingactive energyaccelerated life testArrhenius Equation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:643
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著高度自動化型態時代的來臨,企業對電腦的依賴持續增加,記憶體為電腦設備中最重要的配備之一,其損壞將造成電腦無法運作而可能導致企業重大損失。近年來,有漸多之消費者自行將記憶體產品超頻使用,以期在原有的硬體規格條件下達到較佳之效能,但也可能導致系統壽命減短。本研究提出雙應力加速壽命試驗,運用「溫度」結合「超頻」雙重加嚴參數之測試條件,求得產品於正常環境溫度25℃且2400 MHz超頻使用條件下之壽命分別為1,733小時、1,719小時及1,764小時,與依照業界標準MIL-HDBK-217給定活化能值計算得之產品壽命呈現約66%的差異,若該記憶體使用於一般電腦每日使用8小時,超頻使用條件下之壽命約為218天;若使用於伺服器類產品,每日使用24小時,其超頻使用條件下之壽命則僅約為73天。最後,將超頻視為加嚴參數,運用米勒定律預測得正常溫度環境且1600 MHz之正常使用頻率下之記憶體產品壽命為15,916小時,若使用於一般電腦和伺服器類產品,其壽命分別約為1,989天和663天。研究結果顯示,若使用者為提升電腦執行效能而自行將記憶體超頻使用,則將導致產品期望壽命減少約89%。

The level that a company rely on the computer system is rapid growing in the highly automatic manufacturing environment. The double-data-rate three synchronous dynamic random access memory (DDR3 SDRAM) is one of the most import device in the computer system. The failure of DRAM will result in computer system breakdown that may cause huge loss. Recently, there are more and more users adjust the memory device in an overclocking condition. The purpose is to achieve better performance from the on the existing hardware specifications. However, this may impact the reliability of the memory device. This study proposes a two-stress accelerated life test combining the temperature and overclocking. The result shows that the life time of memory device is in the range of 1719-1764 hours when used in the room temperature (25℃) and 2400MHz overclocking environment. The active energy calculated in this study results in a 66% difference in the memory device life time compared to that as provide by industry standard MIL-HDBK-217. We assume that the memory device may be used in a computer running 8 hour a day and server running 24 hour a day. The corresponding life time is 218 days and 73 days respectively in the condition of overclocking. Finally, this study adopts the overclocking as an accelerated condition. The life time calculated based on Miner''s law is 15,916 hours in room temperature and normal clocking (1600 MHz) condition. When the memory device is used in regular computers and servers, the expected life times are 1,989 days and 663 days respectively. The life time reduces 89 % when the memory device is used in the overclocking condition.

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 5
1.3 研究限制 6
1.4 論文架構 6
第二章 文獻探討 8
2.1 DRAM產品相關文獻 8
2.2加速壽命試驗 8
2.2.1 熱應力 9
2.2.2 非熱應力 11
2.2.3 複合應力 12
第三章 研究方法 15
3.1產品失效數據型態 15
3.2可靠度相關函數運算 17
3.3常見之壽命分配及其相關函數運算 18
3.3.1 指數分配 18
3.3.2 常態分配 19
3.3.3 對數常態分配 21
3.3.4 韋伯分配 23
3.4 可靠度參數估計 26
3.4.1 最大概似估計法 27
3.4.2 機率繪圖紙估計法 27
3.5 適合度檢定 28
3.5.1 卡方檢定 29
3.5.2 K-S檢定 29
3.6 加速試驗模型 30
3.6.1 Arrhenius模型 30
3.6.2 The Generalized Eyring 模型 32
3.6.3 Inverse Power Law 模型 33
3.7 米勒定律 33
第四章 可靠度加速壽命實驗 35
4.1產品相關資訊 35
4.2產品失效定義 35
4.3測試方法與應力水準 36
4.5平台架設 36
第五章 失效數據分析 39
5.1研究流程 39
5.2韋伯參數估計 41
5.3確認失效數據分配 43
5.4失效模式檢定 43
5.5產品於常溫超頻環境下使用壽命 44
5.6產品於常溫環境正常使用頻率下壽命 45
第六章 結論與未來研究方向 47
6.1 結論 47
6.2 未來研究方向 47
參考文獻 49


[1]王致達,建構產品活化能估算及可靠度驗證系統-以DOM產品為例,碩士論文,國立臺北科技大學,台北,2011。
[2]朱道鵬,TFT-LCD Panel 壽命研究,碩士論文,國立台灣科技大學,台北,2009。
[3]阮光業、盛其安,品質管制與可靠度工程,台北:超級圖書出版社,1990,53頁。
[4]周一塵,次世代面板框膠之可靠度預估及加速壽命試驗之研究,碩士論文,國立成功大學,台南,1999。
[5]柯煇耀,可靠度保証-第三版,台北:中華民國品質學會, 2004,1-13頁。
[6]柯煇耀,可靠度保証-第四版,台北:中華民國品質學會,2008,2-21頁。
[7]高社生、張玲霞,可靠性理論與工程應用,北京:國防工業出版社,2002,77頁。
[8]國立台灣大學化學系,大學普通化學實驗,台北:國立台灣大學出版中心,第十二版,2008,49頁。
[9]張正忠,產品加速壽命試驗規劃之研究-以8025無刷直流風扇為例,碩士論文,國立高雄第一科技大學,高雄,2004。
[10]陳耀茂,可靠度工程-方法與應用,台北:五南圖書出版公司,2001,24頁。
[11]解謀東,加速試驗研究-以電動機車之充電器為例,碩士論文,國立清華大學,新竹,1998。
[12]衛志鋼,DOM產品可靠度試驗計劃,碩士論文,私立華梵大學工業工程與經營資訊學系,台北,2006。
[13]賴耿陽,產品壽命管測技術,台南:復漢出版社,1988,57頁。
[14]藍眼科技有限公司,BlueEyes白皮書,http:www.BlueEyes.com.tw,2011年10月30日,3頁。
[15]D. Fugazza, G. Ielmini, Montemurro and A. L. Lacaita, "Temperature- and time-dependent conduction controlled by activation energy in PCM," Electron Devices Meeting (IEDM), San Francisco, 2010, pp. 40-43.
[16]E. Nogueira, M. Vazquez and N. Nunez, "Evaluation of AlGaInP LEDs reliability based on accelerated tests," Microelectronics Reliability, vol. 49, 2009, pp. 1240-1243.
[17]Elsayed, Reliability Engineering, Boston:Addison Wesley Longman Inc., 1996.
[18]F. Bayle and A. Mettas, "Temperature acceleration models in reliability predictions: justification & improvements," Reliability and Maintainability Symposium (RAMS), California, 2010, pp. 1-6.
[19]D. Chao, J. Ma and X. Li, "Research on the reliability of SLD through accelerated life testing," 8th International Conference on Reliability, Maintainability and Safety, China, 2009, pp. 1263-1267.
[20]J. R. King, Probability Charts for Decision Making Second printing Revised edition, New Hampshire: Tamworth, 1981, pp. 24-28.
[21]J. R. Yoon and K. M. Lee, "Analysis the reliability of multilayer ceramic capacitor with inner Ni electrode under highly accelerated life test conditions," Transactions on electrical and electronic materials, vol. 10, no. 1, 2009, pp. 5-8.
[22]J. Ruan, N. Nolhier, G. J. Papaioannou, D. Tremouilles, V. Puyal, C. Villeneuve, T. Idda, F. Coccetti and R. Plana, "Accelerated lifetime test of RF-MEMS switches under ESD stress," Microelectronics Reliability, vol. 49, no. 9-11, 2010, pp. 1256-1259.
[23]J. S. Wang, C. C. Tsai, J. S. Liou, W. C. Cheng, S. Y. Huang, G. H. Chang and W.H. Cheng, " Mean-time-to-failure evaluations of encapsulation materials for LED package in accelerated thermal tests," Microelectronics Reliability, vol. 52, no. 5, 2012, pp. 813-817.
[24]MIL-HDBK-217F, Reliability Prediction of Electronic Equipment, Department of Defense Test Method Standard Microcircuits, 1995, pp. 12-17.
[25]E. Nogueira and J. Mateos, "Accelerated life testing LEDs on temperature and current," 8th Electron Devices (CDE), Spanish, 2011, pp. 1-4.
[26]R. Yang and J. T. Kim, "Temperature accelerated life test(ALT) at the circuit board level," IEEE/CPMT Elect Manufacturing Technology Symposium, Texas, 1995, pp. 158-165
[27]R. Young and J. N. Yoo, "Assessment of failure rate of printed board assemblies by the high temperature accelerated life test," IEEE/CPMT Elect Manufacturing Technology Symposium, Texas, 1997, pp. 1-5.
[28]S. Jayatilleka, M. Apploances and N.G. Okohba, "Use of accelerated life test on transmission belts for predicting product life, identufying better designs, materials and suppliers," IEEE/Proceedings Aunual Reliability And Maintainability Symposium, Florida, 2003, pp. 101-105.
[29]T. Tekcan and B. Kirişken, "Reliability test procedures for achieving highly robust electronic," Reliability and Maintainability Symposium (RAMS), California, 2010, pp. 1-6.
[30]T. D. Hund, "Thermosonic gold-ball bond accelerated test," Electornic Components and Technology, vol. 1, no. 9-11, 1990, pp. 436-441.
[31]W. Nelson, Accelerated Testing: Statistical Models, Test Plans, and Data Analyses, New York: John Wiley, 1990, pp. 35-37.
[32]W. Nelson, Applied Life Data Analysis, New York: John Wiley & Sons, Inc. , 1982.
[33]Y. Y. Yu and F. Chen, "Worst-Case prediction using the arrhenius model," Reliability and Maintainability Symposium, Texas, 2009, pp. 69-71.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔