跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林嘉鼎
研究生(外文):Chia-Ting Lin
論文名稱:利用微波溶劑熱法製備一維三氧化鎢奈米棒及其光降解特性分析之研究
論文名稱(外文):Studies on the Preparation of 1-Dimension WO 3 Nanorods using Microwave-Solvothermal and their Photodegradation Properties
指導教授:蔡德華
指導教授(外文):Teh-Hua Tsai
口試委員:陳慶國郭文正劉豫川張裕祺劉懷德
口試日期:2012-10-24
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:179
中文關鍵詞:微波溶劑熱法奈米棒氧化鎢光降解
外文關鍵詞:MicrowaveSolvothermalNanorodsTungsten TrioxidePhotodegradation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米氧化過渡金屬近年來因為許多優秀的半導體特性而開始了廣泛的應用,像是磁性儲存材料、太陽能的轉換、觸媒等等。其中三氧化鎢因為其優秀的半導體特性,而具有廣泛的實用價值。本篇研究主要分為兩個部份來探討,第一部份首先是利用微波加熱溶劑熱法來製備出具有一維奈米棒結構的三氧化鎢;第二部份則為了降解水中汙染物目標而將三氧化鎢奈米棒當作光觸媒使用,進而研究光降解效率實驗。
在第一部份中,利用六氯化鎢當作鎢源溶解在乙醇中,並以聚乙二醇(PEG)當作分散劑以避免產物團聚,再使用微波加熱溶劑熱法製備三氧化鎢奈米棒,並且對三氧化鎢奈米棒進行XRD、SEM、EDX、HR-TEM、動態光散射儀(Dynamic Light Scattering)DLS以及TG/DTA等物性分析。
實驗過程中,分別控制不同的鎢源濃度、溶劑中乙醇的百分比、溶劑的種類、分散劑的種類以及添加量,以利得到形貌完整、粒徑分布均勻,且高純度的三氧化鎢奈米棒。研究結果發現,從XRD繞射圖分析及電子選區繞射圖(Selected Area Electron Diffraction, SAED)可以證明本研究成功合成出三氧化鎢,另外SEM以及HR-TEM則可以證明其形貌為一維的奈米棒,而其最佳實驗條件分別為0.005M WCl6、PEG(20k) 0.3g以及使用20%的乙醇當作溶劑來進行溶劑熱法,並與JCPDS資料庫88-0550之結果相符合,其長晶方向為[110]的單斜晶系;DLS所檢測出來的結果與SEM以及HR-TEM所檢測的結果相符合;TG/DTA則證明WO3在600℃下具有良好的熱穩定性,不會發生其他的氧化反應;另外溶劑濃度的變化會造成反應時間、結晶度以及顆粒形貌上的影響,反之則利用濃度變化來控制一維或是二維顆粒形貌;溶劑中有機物的含量關係到反應時間,當分散劑含量增加時,反應時間也會跟著增加;使用80%環己醇當作溶劑時,會因為壓力不夠以及對於WCl6相對低的溶解度,而造成結晶度不足的結果,且顆粒形貌上也容易形成方型結構;較長鏈的PEG(400k)當作分散劑時,會限制[110]方向的長晶進而幫助[002]方向的生長;鎢源濃度增加,則會產生粒徑分布較細長的一維WO3棒狀結構,其長度與寬度大約分別為1um及100nm,長徑比(aspect ratio)則為10左右。
在第二部份中,利用在第一部份成功合成出的WO3奈米棒作為光觸媒,在雙層一體型光反應器中照射波長254nm的紫外光來進行高濃度氮類型染料(dimethyl amino-and azo-groups)中的甲基橙(Methyl Orange, MO)的高反應物體積高效率光降解實驗。
實驗中嘗試使用不同WO3濃度以及一般常用的光觸媒TiO2濃度作為WO3光觸媒添加量、改變不同反應物溶液體積作光降解效率分析;另外再針對高濃度的染料尋找最佳的操作條件。實驗結果可以發現,當降解物為50 ppm之低濃度甲基橙(Methyl Orange, MO)時,250 ppm的WO3奈米棒為最佳操作條件,過少的光觸媒會不利於氫氧自由基的生成,而過多的光觸媒則會產生光穿透及光散射的問題;使用TiO2作為光觸媒時,會因為band gap大小、電洞生成效率以及酸性環境的原因,而導致效率不彰;溶劑體積的增加會提升光降解效率,當溶劑體積為800 mL時,其kapp為3.212,與100 mL有著45倍的差距,其主因應為體積的增加造成光輻射分佈更為平均,使得每個光觸媒不會因為遮蔽效應而造成電子躍遷的困難,進而大幅的增加光降解效率;溶劑體積在500 mL時,會因為光觸媒濃度太高導致光穿透降低及光散射,以及光觸媒濃度太低,會使得光生電洞的速率變成過慢等原因,而導致光降解效率降低;在高濃度的MO染料實驗狀況下,750 ppm的光觸媒濃度皆擁有較好的降解效率,但是並不會與其他濃度有太顯著的差距;在探討動力研究中可以發現,本降解反應符合Langmuir–Hinshelwood 1st order model。
因此可藉由微波加熱溶劑熱法快速的製備出符合經濟及時間效率的一維三氧化鎢奈米棒,並且期望可以應用在環境保護的光觸媒研究以及其他半導體材料相關的應用。


In the recent years, nanoparticles of transition metal oxides found a wide range of applications due to their superior semiconducting properties as magnetic storage materials, solar energy conversion materials, and photocatalysts. Among these materials, tungsten trioxide (WO3) nanomaterials has been considered as the most valuable and practical one. This thesis consists two parts of studies related to WO3 nanorods. The first part is the study of the preparation of one-dimensional WO3 nanorods using microwave-assisted solvothermal method. The second part is the study of the photocatalytic activity of the above-described one-dimensional WO3 nanorods using photdegradation of methyl orange as a probe reaction.
In the preparation of one-dimensional WO3 nanorods using microwave-assisted solvothermal method, tungsten hexachlorid dissolved in ethanol was used as tungsten source while polyethylene glycol was used as a dispersing agent. The physical properties of tungsten oxide nanorods were analyzed by XRD, SEM, EDX, HR-TEM, DLS and TG/DTA.
In order to obtain tungsten trioxide nanorods with complete morphology, narrow size distribution, and high purity, the effects of the concentration of the tungsten source, the concentration of ethanol in the solvent, solvent type, the type and amount of dispersant were studied. The results showed that tungsten trioxide could be synthesized successfully and confirmed by the XRD diffraction pattern and SEAD analysis. The morphology of tungsten trioxide nanorods was demonstrated as one-dimensional via SEM and HR-TEM. The optimum synthesis conditions appeared to be the 0.005M WCl6 with 0.3g PEG (20k) using 20% ethanol as solvent. The direction of crystal growth of monoclinic was showed as [110] which was consistent with the results of the database of the JCPDS 88-0550. Moreover, the results of DLS analysis were in accordance with the SEM and HR-TEM results.
The TG/DTA analysis proved that WO3 has good thermal stability and the oxidation reaction would not occur under 600 ℃. The reaction time, crystallinity and particle morphology would be affected by the changes of solvent concentration. The changes of solvent concentration could be applied to control the one-dimensional or two-dimensional particle morphology as well. It was found that the organic compound contents in the solvent were related to the reaction time.
When an 80% cyclohexanol was used as solvent, a low reaction pressure and low WCl6 solubility would cause a shortage in crystallinity of the WO3 obtained. The particles of the WO3 obtained tended to form a square structure. Besides, the experimental results indicated that when PEG (400k) was used as a dispersing agent, the crystal growth along the [110] direction would be limited and the growth along the [002] direction would be increased. Furthermore, when the concentration of tungsten source was raised, a slender one-dimensional WO3 rod-like structure was formed. The slender one-dimensional WO3 rod-like structure was approximately 1 um long and 100nm wide with an aspect ratio of 10.
On the other hand, the photocatalytic activity of the one-dimensional WO3 nanorods was studied using photdegradation of methyl orange as a probe reaction. The photocatalysis was carried out in a double-layer integrated reactor under 254nm UV irradiation to degradate the dimethyl amino- and azo-groups of the methyl orange.
In photodegradation experiments, the effects of the concentrations of WO3 and TiO2 catalysts and the changes in different reactant solution volume on the photodegradation efficiency were investigated. The optimum conditions were targeted especially on systems with high concentrations of methyl orange. The experimental results showed that a 50 ppm methyl orange was photodegradated by 250 ppm WO3 nanorods with an efficiency higher than that by commercially available TiO2 (Degussa P-25) catalyst. The poor performance of TiO2 catalyst was explained by the band gap, the efficiency of electron hole generation, and the acidic environment.
It was found that an increase in the volume of solvent would increase the photodegradation efficiency. When the solution volume was 800mL, a kapp of 3.212 was obtained. This high photodegradation efficiency was about 45 times of the kapp observed with a solution volume of 100mL. The increase in solution volume would make the light radiation distribution more even and thus substantially increased the photdegradation efficiency.
Moreover, slightly higher degradation efficiency toward high methyl orange concentrations was observed when the concentration of the WO3 catalyst was increased from 100 ppm to 750 ppm.
Based on the kinetics study results, it was found that the degradation reaction of methyl orange on the one-dimensional WO3 nanorods was consistent with Langmuir- Hinshelwood 1-st order model.
The photocatalytic activity of the one-dimensional WO3 nanorods synthesized by microwave-assisted solvothemal method was observed; further application in environmental protection could be expected.


中文摘要 i
ABSTRACT iv
誌謝 viii
目錄 x
表目錄 xv
圖目錄 xvi
第一部分 利用微波溶劑熱法製備一維三氧化鎢奈米棒 1
第一章 緒論 1
1.1 研究背景 1
1.1.1 一維奈米材料 3
1.1.2 氧化鎢 5
1.2 研究動機與目的 6
1.3 論文架構及流程圖 6
第二章 文獻回顧 8
2.1 一維奈米材料製備方法 8
2.1.1 電弧放電法(arc discharge) 8
2.1.2 雷射蒸發法(laser vaporization) 9
2.1.3 化學氣相沉積(chemical vapor deposition) 10
2.1.4 模板法(template method) 11
2.1.5 溶膠-凝膠法(sol-gel) 13
2.1.6 奈米團簇催化法 14
2.1.7 水熱與溶劑熱法(hydrothermal/solvothermal method) 14
2.1.7.1 水熱合成的成核及成長理論 15
2.1.7.2 高壓反應釜的反應容積與溫度之關係 19
2.1.7.3 水熱法之優點 21
2.2 過渡金屬氧化物(Transition Metal Oxides) 22
2.2.1 氧化鎢奈米材料 22
2.3 微波加熱系統 23
2.4 分散理論 27
2.4.1 表面活性劑 27
2.4.2 表面活性劑特性及應用 29
2.4.3 微胞 30
2.4.4 微胞的形狀 32
2.4.5 微爆 33
第三章 實驗設備與方法 36
3.1 實驗藥品 36
3.2 實驗設備 37
3.3 實驗流程圖 39
3.3.1 改變六氯化鎢濃度實驗步驟 40
3.3.2 改變乙醇濃度實驗步驟 40
3.3.3 改變聚乙二醇20000(PEG 20000)添加量實驗步驟 40
3.3.4 溶劑改為環己醇的實驗步驟 41
3.3.5 改變分散劑PEG分子量(400k)實驗步驟 41
3.4 分析儀器介紹 43
3.4.1 X-ray繞射儀 (XRD) 43
3.4.2 掃描式電子顯微鏡 (SEM) 45
3.4.3 能量散射光譜儀的構造與原理(EDX) 46
3.4.4 粒徑分析(DLS) 48
3.4.5 高解析穿透式電子顯微鏡(HR-TEM) 49
3.4.6 選區電子繞射圖(SAED) 51
3.4.7 熱重-熱差計雙重分析儀(TG/DTA ) 52
第四章 結果與討論 54
4.1 XRD繞射分析 54
4.1.1 改變六氯化鎢濃度實驗 55
4.1.2 改變乙醇濃度實驗 58
4.1.3 改變PEG(20000)添加量實驗 60
4.1.4 溶劑改為環己醇實驗 61
4.1.5 改變分散劑PEG分子量(400k)實驗 62
4.2 SEM分析 63
4.2.1 改變六氯化鎢濃度實驗 63
4.2.2 改變乙醇濃度實驗 67
4.2.3 改變PEG(20000)添加量實驗 68
4.2.4 溶劑改為環己醇的實驗 73
4.2.5 改變分散劑PEG分子量(400k)實驗 74
4.3 SEM-EDX分析 75
4.4 粒徑分析(DLS) 77
4.5 高解析穿透式電子顯微鏡分析(HR-TEM) 78
4.6 熱重-熱差雙重分析儀分析(TG/DTA ) 80
4.7 加熱反應時間分析 82
第五章 結論 84
第二部分 三氧化鎢之光降解分析 87
第六章 降解緒論 87
6.1 研究背景 87
6.2 論文架構及流程圖 89
第七章 降解文獻回顧 90
7.1 高級氧化程序 90
7.1.1 臭氧氧化程序 90
7.1.2 紫外光光解法 91
7.1.3 紫外光/半導體降解程序 91
7.1.4 UV/H2O2法 93
7.1.5 Fenton/Photo-Fenton/Fenton-Like 94
7.1.6 超音波聲解法 95
7.2 光分解反應程序 96
7.2.1 光化學反應之分類 97
7.2.2 紫外光能量特性 98
7.3 光的性質 101
7.3.1 光化學反應理論 102
7.3.2 光降解反應理論 104
7.3.3 影響光降解速率的因素 108
7.3.4 等溫吸附方程式分析 112
7.3.5 光觸媒反應動力模型 115
7.3.6 光化學反應器 117
7.4 紫外光/過氧化氫/半導體光觸媒反應程序 119
7.4.1 過氧化氫一般性質 119
7.4.2 紫外光/過氧化氫反應之理論與機制 121
7.4.3 紫外光/半導體光觸媒反應之理論與機制 124
7.4.4 氧化劑 126
7.5 半導體光觸媒催化劑改質 127
7.5.1 貴金屬的沉積 127
7.5.2 複合型半導體 127
7.5.3 金屬離子摻雜 128
7.5.4 染料光敏化 129
7.6 鎢的回收 130
第八章 降解實驗設備與方法 133
8.1 實驗儀器 133
8.2 實驗藥品 134
8.3 實驗裝置 135
8.4 實驗步驟 138
8.4.1 低濃度;低體積;光觸媒種類及濃度改變 138
8.4.2 低MO濃度;固定WO3濃度,溶液體積改變 139
8.4.3 低MO濃度;固定溶液體積;改變WO3濃度 139
8.4.4 固定溶液體積;高MO濃度與WO3濃度變化關係 139
第九章 降解結果與討論 142
9.1 低濃度;低體積;光觸媒種類及濃度改變 142
9.2 低MO濃度;固定WO3濃度,溶液體積改變 146
9.3 低MO濃度;固定溶液體積;改變WO3濃度 150
9.4 固定溶液體積;高MO濃度與WO3濃度變化關係 152
第十章 降解結論 158
第十一章 未來研究展望 160
參考文獻 161



[1] 成會明, 奈米碳管, 五南圖書出版股份有限公司, 2004.
[2] 林鴻明, in, 科技發展政策報導, 2002.
[3] P. Poizot, S. Grugeon, L. Dupont, J.M. Tarascon,Nature, 407 496 (2000)
[4] C. Julien, E. Haro-Poniatowski, M.A. Camacho-Lopez, L. Escobar-Alarcon, J. Jimenez-Jarquin,Mater. Sci. Eng. B, 65 170 (1999)
[5] M. Ponzi, C. Duschatzky, A. Carrascull, E. Ponzi,Appl. Catal. A, 169 373 (1998)
[6] G. Micocci,J. Vac. Sci. Technol. A, 15 34 (1997)
[7] J. Livage,Chemistry of Materials, 3 758 (1991)
[8] S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky, E.W. McFarland,Enhancement of Photocatalytic and Electrochromic Properties of Electrochemically Fabricated Mesoporous WO3 Thin Films, Advanced Materials, 15 1269-1273 (2003)
[9] A. Talledo, C.G. Granqvist,Journal of Applied Physics, 77 4655 (1995)
[10] C.G. Granqvist,Solar Energy Materials and Solar Cells, 60 201 (2000)
[11] F. Pichot, S. Ferrere, R.J. Pitts, B.A. Gregg,Journal of the Electrochemical Society, 146 4324 (1999)
[12] Y. Zhao, Z.C. Feng, Y. Liang,Sensors and Actuators, B, 66 171 (2000)
[13] D.S. Lee, K.H. Nam, D.D. Lee,Thin Solid Films, 375 142 (2000)
[14] J.L. Solis, S. Saukko, L. Kish, C.G. Granqvist, V. Lantto,Semiconductor gas sensors based on nanostructured tungsten oxide, Thin Solid Films, 391 255-260 (2001)
[15] Y. Li, Y. Bando, D. Golberg,Quasi‐Aligned Single‐Crystalline W18O49 Nanotubes and Nanowires, Advanced Materials, 15 1294-1296 (2003)
[16] Z. Wang, S. Zhou, L. Wu,Preparation of rectangular WO3-H2O nanotubes under mild conditions, Advanced Functional Materials, 17 1790-1794 (2007)
[17] K. Lee, W.S. Seo, J.T. Park,Synthesis and optical properties of colloidal tungsten oxide nanorods, Journal of the American Chemical Society, 125 3408-3409 (2003)
[18] G. Gu, B. Zheng, W.Q. Han, S. Roth, J. Liu,Tungsten Oxide Nanowires on Tungsten Substrates, Nano Letters, 2 849-851 (2002)
[19] M. Niederberger, M.H. Bartl, G.D. Stucky,Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality, Journal of the American Chemical Society, 124 13642-13643 (2002)
[20] P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky,Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature, 396 152-155 (1998)
[21] Z. Pan, Z. Dai, Z. Wang,Nanobelts of semiconducting oxides, Science, 291 1947 (2001)
[22] R. Saito, G. Dresselhaus, M. Dresselhaus, Knovel, Physical properties of carbon nanotubes, Imperial college press London, 1998.
[23] H. Chen, N. Xu, S. Deng, D. Lu, Z. Li, J. Zhou, J. Chen,Gasochromic effect and relative mechanism of WO3 nanowire films, Nanotechnology, 18 205701 (2007)
[24] C. Murphy, N. Jana,Controlling the aspect ratio of inorganic nanorods and nanowires, Advanced Materials, 14 80-82 (2002)
[25] E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z. Wang,Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Applied Physics Letters, 81 1869 (2002)
[26] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Knovel, Physical properties of carbon nanotubes, Imperial College Press London, 1998.
[27] S.K. Pillai, S.S. Ray, M. Moodley,Purification of multi-walled carbon nanotubes, Journal of Nanoscience and Nanotechnology, 8 6187-6207 (2008)
[28] J.H. Hafner, C.L. Cheung, T.H. Oosterkamp, C.M. Lieber,High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, The Journal of Physical Chemistry B, 105 743-746 (2001)
[29] X. Nan, Z. Gu, Z. Liu,Immobilizing shortened single-walled carbon nanotubes (SWNTs) on gold using a surface condensation method, Journal of Colloid and Interface Science, 245 311-318 (2002)
[30] M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber,Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature, 415 617-620 (2002)
[31] Y.D. Li, H.W. Liao, Y. Ding, Y.T. Qian, L. Yang, G.E. Zhou,Nonaqueous synthesis of CdS nanorod semiconductor, Chemistry of Materials, 10 2301-2303 (1998)
[32] H.C. Li,The Studies of Risk Assessment of Nanoparticles, (2006)
[33] P. Cox, in, Clarendon Press, Oxford, 1995.
[34] P.A. Cox, Transition metal oxides: an introduction to their electronic structure and properties, Oxford Univ Pr, 2010.
[35] A. Souza Filho, V. Freire, J. Sasaki, J. Mendes Filho, J. Juliao, U. Gomes,Coexistence of triclinic and monoclinic phases in WO3 ceramics, Journal of Raman Spectroscopy, 31 451-454 (2000)
[36] A. Souza‐Filho, V. Freire, J. Sasaki, J. Mendes Filho, J. Juliao, U. Gomes,Coexistence of triclinic and monoclinic phases in WO3 ceramics, Journal of Raman Spectroscopy, 31 451-454 (2000)
[37] A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard,Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge, Physical Review Letters, 76 4737-4740 (1996)
[38] Y. Choi, W. Kim, Y. Park, S. Lee, D. Bae, Y. Lee, G.S. Park, W. Choi, N. Lee, J. Kim,Catalytic Growth of £] Ga2O3 Nanowires by Arc Discharge, Advanced Materials, 12 746-750 (2000)
[39] T. Guo, P. Nikolaev, A. Thess, D. Colbert, R. Smalley,Catalytic growth of single-walled manotubes by laser vaporization, Chemical Physics Letters, 243 49-54 (1995)
[40] B. Xiang, P. Wang, X. Zhang, Shadi. A. Dayeh, D.P.R. Aplin, C. Soci, D. Yu, D. Wang,Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition, Nano Letters, 7 323-328 (2007)
[41] C. Bower, O. Zhou, W. Zhu, D. Werder, S. Jin,Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition, Applied Physics Letters, 77 2767 (2000)
[42] J.S. Lee, G.H. Gu, H. Kim, J.S. Suh, I. Han, N.S. Lee, J.M. Kim, G.S. Park,Well-ordered Co nanowire arrays for aligned carbon nanotube arrays, Synthetic Metals, 124 307-310 (2001)
[43] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, Y. Tang,Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires, Nano Letters, 2 717-720 (2002)
[44] X. Wang, W. Huang, P. Sebastian, S. Gamboa,Sol-gel template synthesis of highly ordered MnO2 nanowire arrays, Journal of Power Sources, 140 211-215 (2005)
[45] H.G. Choi, Y.H. Jung, D.K. Kim,Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet, Journal of the American Ceramic Society, 88 1684-1686 (2005)
[46] J. Hutchison, N. Kiselev, E. Krinichnaya, A. Krestinin, R. Loutfy, A. Morawsky, V. Muradyan, E. Obraztsova, J. Sloan, S. Terekhov,Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method, Carbon, 39 761-770 (2001)
[47] S. Bandow, A. Rao, K. Williams, A. Thess, R. Smalley, P. Eklund,Purification of single-wall carbon nanotubes by microfiltration, The Journal of Physical Chemistry B, 101 8839-8842 (1997)
[48] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler,Crystalline ropes of metallic carbon nanotubes, Science, 273 483-487 (1996)
[49] J. Kong, A.M. Cassell, H. Dai,Chemical vapor deposition of methane for single-walled carbon nanotubes, Chemical Physics Letters, 292 567-574 (1998)
[50] J.C. Hulteen, C.R. Martin,A general template-based method for the preparation ofnanomaterials, Journal of Materials Chemistry, 7 1075-1087 (1997)
[51] M. Wirtz, M. Parker, Y. Kobayashi, C.R. Martin,Template‐Synthesized Nanotubes for Chemical Separations and Analysis, Chemistry-a European Journal, 8 3572-3578 (2002)
[52] D. Zhou, S. Seraphin,Production of silicon carbide whiskers from carbon nanoclusters, Chemical Physics Letters, 222 233-238 (1994)
[53] H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber,Synthesis and characterization of carbide nanorods, Nature, 375 769-772 (1995)
[54] L.L. Hench, J.K. West,The sol-gel process, Chemical Reviews, 90 33-72 (1990)
[55] K.Z. Li, J. Wei, H.J. Li, Z.J. Li, D.S. Hou, Y.L. Zhang,Photoluminescence of hexagonal-shaped SiC nanowires prepared by sol–gel process, Materials Science and Engineering: A, 460 233-237 (2007)
[56] L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber,Epitaxial core-shell and core-multishell nanowire heterostructures, Nature, 420 57-61 (2002)
[57] G.W. MOREY,Hydrothermal synthesis, Journal of the American Ceramic Society, 36 279-285 (1953)
[58] S. Alvarado, M. Campagna, A. Fattah, W. Uelhoff,Critical wetting and surface-induced continuous phase transition on Cu 3 Au (001), Zeitschrift fur Physik B Condensed Matter, 66 103-106 (1987)
[59] 黃聖哲,SiO2 對奈米級錳鋅鐵氧磁體粉末 燒結及燒結體性質之影響, (2002)
[60] C. Cozzi, D. Cadorin,Nucleation, Growth and Coagulation of Solid Particles in Flames, Combustion Science and Technology, 5 213-218 (1972)
[61] G. Dell''Agli, G. Mascolo,Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature, Journal of the European Ceramic Society, 20 139-145 (2000)
[62] R.I. Walton,Subcritical solvothermal synthesis of condensed inorganic materials, Chemical Society Reviews, 31 230-238 (2002)
[63] A. Rabenau,The role of hydrothermal synthesis in preparative chemistry, Angewandte Chemie International Edition in English, 24 1026-1040 (1985)
[64] 林國海,以水熱法探討奈米級?-Al2O3 披覆氫氧基之研究, (2005)
[65] P. Dai, H.A. Mook, G. Aeppli, S.M. Hayden, F. Dogan,Resonance as a measure of pairing correlations in the high-T c superconductor YBa2Cu3O6.6, Nature, 406 965-968 (2000)
[66] A. Moreo, S. Yunoki, E. Dagotto,Phase Separation Scenario for Manganese Oxides and Related Materials, Science, 283 2034-2040 (1999)
[67] T. Tybell, P. Paruch, T. Giamarchi, J.M. Triscone,Domain Wall Creep in Epitaxial Ferroelectric Pb(Zr_{0.2}Ti_{0.8})O_{3} Thin Films, Physical Review Letters, 89 097601 (2002)
[68] G.A. Prinz,Magnetoelectronics, Science, 282 1660-1663 (1998)
[69] G.B. Lubkin,Power Applications of High-Temperature Superconductors, Physics Today, 49 48-51 (1996)
[70] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret,Manipulating the Quantum State of an Electrical Circuit, Science, 296 886-889 (2002)
[71] S. Sun, S. Anders, T. Thomson, J.E.E. Baglin, M.F. Toney, H.F. Hamann, C.B. Murray, B.D. Terris,Controlled Synthesis and Assembly of FePt Nanoparticles, The Journal of Physical Chemistry B, 107 5419-5425 (2003)
[72] J.M.S. Skakle,Crystal chemical substitutions and doping of YBa2Cu3Ox and related superconductors, Materials Science and Engineering: R: Reports, 23 1-40 (1998)
[73] M. Fath, S. Freisem, A.A. Menovsky, Y. Tomioka, J. Aarts, J.A. Mydosh,Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites, Science, 285 1540-1542 (1999)
[74] C.H. Ahn, K.M. Rabe, J.-M. Triscone,Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures, Science, 303 488-491 (2004)
[75] L. Manna, E.C. Scher, A.P. Alivisatos,Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals, Journal of the American Chemical Society, 122 12700-12706 (2000)
[76] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan,One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced Materials, 15 353-389 (2003)
[77] Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber,Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems, Science, 302 1377-1379 (2003)
[78] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang,Room-Temperature Ultraviolet Nanowire Nanolasers, Science, 292 1897-1899 (2001)
[79] J.J. Urban, W.S. Yun, Q. Gu, H. Park,Synthesis of Single-Crystalline Perovskite Nanorods Composed of Barium Titanate and Strontium Titanate, Journal of the American Chemical Society, 124 1186-1187 (2002)
[80] R. He, M. Law, R. Fan, F. Kim, P. Yang,Functional Bimorph Composite Nanotapes, Nano Letters, 2 1109-1112 (2002)
[81] Jiang, L.L. Henry, K.I. Gnanasekar, Chen, E.I. Meletis,Self-Assembly of Highly Epitaxial (La,Sr)MnO3 Nanorods on (001) LaAlO3, Nano Letters, 4 741-745 (2004)
[82] C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski,Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications, Journal of the American Chemical Society, 123 10639-10649 (2001)
[83] S.A. Galema,Microwave chemistry, Chemical Society Reviews, 26 233-238 (1997)
[84] W. Yu, W. Tu, H. Liu,Synthesis of nanoscale platinum colloids by microwave dielectric heating, Langmuir, 15 6-9 (1999)
[85] 紀柏享, 孫毓璋, 楊末雄,微波消化之方法與應用, (1998)
[86] J.R. Roth, in, Google Patents, 1991.
[87] A. Arafat, J. Jansen, A. Ebaid, H. Van Bekkum,Microwave preparation of zeolite Y and ZSM-5, Zeolites, 13 162-165 (1993)
[88] C.G. Wu, T. Bein,Microwave synthesis of molecular sieve MCM-41, Chemical Communications, 925-926 (1996)
[89] C.C. Landry, A.R. Barron,Synthesis of polycrystalline chalcopyrite semiconductors by microwave irradiation, Science, 260 1653 (1993)
[90] R.S. Varma, H.M. Meshram,Solid state deoximation with ammonium persulfate-silica gel: Regeneration of carbonyl compounds using microwaves, Tetrahedron Letters, 38 5427-5428 (1997)
[91] R.S. Varma, R. Dahiya, S. Kumar,Microwave-assisted Henry reaction: Solventless synthesis of conjugated nitroalkenes* 1, Tetrahedron Letters, 38 5131-5134 (1997)
[92] C. Marun, S.L. Suib, M. Dery, J.B. Harrison, M. Kablaoui,Effect of dielectric constant, cavities in series, and cavities in parallel on the product distribution of the oligomerization of methane via microwave plasmas, The Journal of Physical Chemistry, 100 17866-17872 (1996)
[93] J.R.J. Pare, J.M.R. Belanger, S.S. Stafford,Microwave-assisted process (MAP(tm)): anew tool for the analytical laboratory, Trends Anal. Chem, 13 176-184 (1994)
[94] G. Bond, R. Moyes, D. Whan,Photoluminescence studies of CdTe films and junctions, Catalysis Today, 17 429 (1993)
[95] A. Saskia,Microwave chemistry, Chem. Soc. Rev, 26 233 (1997)
[96] W. Yuji, K. Hiromitsu, S. Takao, M. Hirotaro, S. Takayuki, K. Takayuki, Y. Shozo,High efficiency CSS CdTe solar cells, Chem. Lett, 7 607 (1999)
[97] D.L. Boxall, G.A. Deluga, E.A. Kenik, W.D. King, C. Lukehart,Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: A DMFC anode catalyst of high relative performance, Chemistry of Materials, 13 891-900 (2001)
[98] K. Park, J. Son, H. Chung, S. Kim, C. Lee, H. Kim,Synthesis of LiFePO4 by co-precipitation and microwave heating, Electrochemistry Communications, 5 839-842 (2003)
[99] A. Cirera, A. Vil , A. Dieguez, A. Cabot, A. Cornet, J. Morante,Microwave processing for the low cost, mass production of undoped and in situ catalytic doped nanosized SnO2 gas sensor powders, Sensors and Actuators B: Chemical, 64 65-69 (2000)
[100] X.H. Liao, J.M. Zhu, J.J. Zhu, J.Z. Xu, H.Y. Chen,Preparation of monodispersed nanocrystallineCeO2 powders by microwave irradiation, Chemical Communications, 937-938 (2001)
[101] J.J. Zhu, J.M. Zhu, X.H. Liao, J.L. Fang, M.G. Zhou, H.Y. Chen,Rapid synthesis of nanocrystalline SnO2 powders by microwave heating method, Materials Letters, 53 12-19 (2002)
[102] X. Liao, J. Zhu, W. Zhong, H.Y. Chen,Synthesis of amorphous Fe2O3 nanoparticles by microwave irradiation, Materials Letters, 50 341-346 (2001)
[103] W. Tu, H. Liu,Rapid synthesis of nanoscale colloidal metalclusters by microwave irradiation, Journal of Materials Chemistry, 10 2207-2211 (2000)
[104] P. Slangen, J. Jansen, H. Van Bekkum,The effect of ageing on the microwave synthesis of zeolite NaA, Microporous Materials, 9 259-265 (1997)
[105] S. Komarneni, R. Roy, Q. Li,Microwave-hydrothermal synthesis of ceramic powders, Materials Research Bulletin, 27 1393-1405 (1992)
[106] J. Zhu, O. Palchik, S. Chen, A. Gedanken,Microwave assisted preparation of CdSe, PbSe, and Cu2-x Se nanoparticles, The Journal of Physical Chemistry B, 104 7344-7347 (2000)
[107] P.M. Holland, D.N. Rubingh, A.C.S.D.o. Colloid, S. Chemistry,Mixed surfactant systems, (1992)
[108] B. Palla, D. Shah,Correlation of Dispersion Stability with Surfactant Concentration and Abrasive Particle Size for Chemical Mechanical Polishing (CMP) Slurries, Journal of Dispersion Science and Technology, 21 491-509 (2000)
[109] T.M. Pan, T.F. Lei, C.C. Chen, T.S. Chao, M.C. Liaw, W.L. Yang, M.S. Tsai, C. Lu, W. Chang,Novel cleaning solutions for polysilicon film post chemical mechanical polishing, Electron Device Letters, IEEE, 21 338-340 (2000)
[110] C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, J. Beck,Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359 710-712 (1992)
[111] G.S. Hartley,Aqueous solutions of paraffin-chain salts: a study in micelle formation, (1936)
[112] J. McBain, J. Alexander,Colloid chemistry, theoretical and applied, Reinhold, New York, (1944)
[113] C.J. Brinker, Y. Lu, A. Sellinger, H. Fan,Evaporation-induced self-assembly: nanostructures made easy, Advanced Materials, 11 579-585 (1999)
[114] Y. Kitamura, Q. Huang, Y. Oka, T. Takahashi,Flashing of Superheated Water-in-Oil Emulsions—Micro-Explosion of Emulsified Fuels—, Journal of Chemical Engineering of Japan, 23 711-715 (1990)
[115] H. Watanabe, T. Harada, Y. Matsushita, H. Aoki, T. Miura,The characteristics of puffing of the carbonated emulsified fuel, International Journal of Heat and Mass Transfer, 52 3676-3684 (2009)
[116] F. Takahashi, I. Heilweil, F. Dryer,Disruptive burning mechanism of free slurry droplets, Combustion Science and Technology, 65 151-165 (1989)
[117] S. Turns, S. Wong, E. Ryba,Combustion of aluminum-based slurry agglomerates, Combustion Science and Technology, 54 299-318 (1987)
[118] 林麗娟,X 光繞射原理及其應用, 工業材料, 86 100 (1994)
[119] M.A. Hayat, Principles and techniques of scanning electron microscopy. Biological applications. Volume 1, Van Nostrand Reinhold Company., 1974.
[120] H. NAKAMURA, T. KANEUCHI, M. NISHINO, S. KUWABARA,Energy Dispersive X-ray Fluorescence Analysis by Shimadzu EDX-700 and EDX-800, Shimadzu Review, 56 181-189 (1999)
[121] B.J. Berne, R. Pecora, Dynamic light scattering: with applications to chemistry, biology, and physics, Dover Pubns, 2000.
[122] E. Nelson, Dynamical theories of Brownian motion, Princeton university press Princeton, 1967.
[123] B. Duplantier,Brownian motion,“diverse and undulating”, Einstein, 1905–2005, 201-293 (2006)
[124] P. Agrawal, G. Thiele, in, IEEE, 1971, pp. 41-44.
[125] B. Lippens, J. De Boer,Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffraction, Acta Crystallographica, 17 1312-1321 (1964)
[126] H.E. Kissinger,Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29 1702-1706 (1957)
[127] I.C.f.D. Data,Joint Committee on Powder Diffraction Standards, ICDD, (2006)
[128] A. Phuruangrat, D.J. Ham, S.J. Hong, S. Thongtem, J.S. Lee,Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction, Journal of Materials Chemistry, 20 1683-1690 (2010)
[129] Y. Yu, D. Xu,Single-crystalline TiO2 nanorods: Highly active and easily recycled photocatalysts, Applied Catalysis B: Environmental, 73 166-171 (2007)
[130] J.-H. Ha, P. Muralidharan, D.K. Kim,Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts, Journal of Alloys and Compounds, 475 446-451 (2009)
[131] X.M. Wang, G. Lorimer, P. Xiao,Solvothermal synthesis and processing of yttria-stabilized zirconia nanopowder, Journal of the American Ceramic Society, 88 809-816 (2005)
[132] Y.X. Wang, J. Sun, X. Fan, X. Yu,A CTAB-assisted hydrothermal and solvothermal synthesis of ZnO nanopowders, Ceramics International, 37 3431-3436 (2011)
[133] D.W. Wang, Q.H. Wang, T.M. Wang,Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method, CrystEngComm, 12 755-761 (2010)
[134] X. He, M. Cao,Synthesis and characterization of PbCrO4 and PbWO4 nanorods, Nanotechnology, 17 3139-3143 (2006)
[135] Y. Zhao, W. Hu, Y. Xia, E. Smith, Y. Zhu, C. Dunnill, D. Gregory,Preparation and characterization of tungsten oxynitride nanowires, Journal of Materials Chemistry, 17 4436-4440 (2007)
[136] X. Chang, S. Sun, Z. Li, X. Xu, Y. Qiu,Assembly of tungsten oxide nanobundles and their electrochromic properties, Applied Surface Science, 257 5726-5730 (2011)
[137] F. Steyer, K. Sundmacher,VLE and LLE data for the system cyclohexane+ cyclohexene+ water+ cyclohexanol, Journal of Chemical & Engineering Data, 49 1675-1681 (2004)
[138] M. Cao, X. Wu, X. He, C. Hu,Microemulsion-mediated solvothermal synthesis of SrCO3 nanostructures, Langmuir, 21 6093-6096 (2005)
[139] G. Gao, R. Shi, W. Qin, Y. Shi, G. Xu, G. Qiu, X. Liu,Solvothermal synthesis and characterization of size-controlled monodisperse Fe3O4 nanoparticles, Journal of Materials Science, 45 3483-3489 (2010)
[140] H. Hassani, E. Marzbanrad, C. Zamani, B. Raissi,Effect of hydrothermal duration on synthesis of WO 3 nanorods, Journal of Materials Science: Materials in Electronics, 22 1264-1268 (2011)
[141] E. Khoo, P.S. Lee, J. Ma,Electrophoretic deposition (EPD) of WO3 nanorods for electrochromic application, Journal of the European Ceramic Society, 30 1139-1144 (2010)
[142] N. Shojaee, T. Ebadzadeh, A. Aghaei,Effect of concentration and heating conditions on microwave-assisted hydrothermal synthesis of ZnO nanorods, Materials Characterization, 61 1418-1423 (2010)
[143] J.F.A. Oliveira, T.M. Milao, V.D. Araujo, M.L. Moreira, E. Longo, M.I.B. Bernardi,Influence of different solvents on the structural, optical and morphological properties of CdS nanoparticles, Journal of Alloys and Compounds, 509 6880-6883 (2011)
[144] Q. Nie, Q. Yuan, W. Chen, Z. Xu,Effects of coordination agents on the morphology of CdS nanocrystallites synthesized by the hydrothermal method, Journal of Crystal Growth, 265 420-424 (2004)
[145] A. Phuruangrat, T. Thongtem, S. Thongtem,Effects of ethylenediamine to water ratios on cadmium sulfide nanorods and nanoparticles produced by a solvothermal method, Materials Letters, 63 1538-1541 (2009)
[146] A. Phuruangrat, T. Thongtem, S. Thongtem,Characterization of cadmium sulfide nanorods prepared by the solvothermal process, Materials Letters, 63 1562-1565 (2009)
[147] J.B. Veliotti,New Research on Solid State Chemistry, 241-267 (2007)
[148] R.J. Pugh, L. Bergstrom, Surface and colloid chemistry in advanced ceramics processing, CRC, 1994.
[149] Y. Huang, L. Zhang, W. Huan, X. Liang, X. Liu, Y. Yang,A Study on Synthesis and Properties of Fe3O4 Nanoparticles by Solvothermal Method, Glass Physics and Chemistry, 36 325-331 (2010)
[150] B. Pan, D. Cui, P. Xu, Q. Li, T. Huang, R. He, F. Gao,Study on interaction between gold nanorod and bovine serum albumin, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 295 217-222 (2007)
[151] Z. Gu, T. Zhai, B. Gao, X. Sheng, Y. Wang, H. Fu, Y. Ma, J. Yao,Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures, Journal of Physical Chemistry B, 110 23829-23836 (2006)
[152] X. Fu, in, 2012, pp. 590-593.
[153] Z.G. Zhao, M. Miyauchi,Shape modulation of Tungstic acid and tungsten oxide hollow structures, Journal of Physical Chemistry C, 113 6539-6546 (2009)
[154] V. Hariharan, M. Parthibavarman, C. Sekar,Synthesis of tungsten oxide (W18O49) nanosheets utilizing EDTA salt by microwave irradiation method, Journal of Alloys and Compounds, 509 4788-4792 (2011)
[155] K.H. Chang, C.C. Hu, C.M. Huang, Y.L. Liu, C.I. Chang,Microwave-assisted hydrothermal synthesis of crystalline WO 3-WO3‧0.5H2O mixtures for pseudocapacitors of the asymmetric type, Journal of Power Sources, 196 2387-2392 (2011)
[156] H. Gerischer,Photoelectrochemical catalysis of the oxidation of organic molecules by oxygen on small semiconductor particles with TiO2 as an example, Electrochimica Acta, 38 3-9 (1993)
[157] A. Fujishima, K. Honda,Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 37-38 (1972)
[158] A. Hagfeld, M. Gratzel,Light-induced redox reactions in nanocrystalline systems, Chemical Reviews, 95 49-68 (1995)
[159] H. Hidaka, J. Zhao, E. Pelizzetti, N. Serpone,Photodegradation of surfactants. 8. Comparison of photocatalytic processes between anionic sodium dodecylbenzenesulfonate and cationic benzyldodecyldimethylammonium chloride on the TiO2 surface, Journal of Physical Chemistry, 96 2226-2230 (1992)
[160] S. Lakshmi, R. Renganathan, S. Fujita,Study on TiO2-mediated photocatalytic degradation of methylene blue, Journal of Photochemistry and Photobiology, A: Chemistry, 88 163-167 (1995)
[161] A.L. Linsebigler, G. Lu, J.T. Yates Jr,Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews, 95 735-758 (1995)
[162] R.W. Matthews,Photocatalytic oxidation and adsorption of methylene blue on thin films of near-ultraviolet-illuminated TiO2, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 85 1291-1302 (1989)
[163] A. Mills, R.H. Davies, D. Worsley,Water purification by semiconductor photocatalysis, Chemical Society Reviews, 22 417-425 (1993)
[164] C. Nasr, K. Vinodgopal, L. Fisher, S. Hotchandani, A.K. Chattopadhyay, P.V. Kamat,Environmental photochemistry on semiconductor surfaces. Visible light induced degradation of a textile diazo dye, naphthol blue black, on TiO2 nanoparticles, Journal of Physical Chemistry, 100 8436-8442 (1996)
[165] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka,Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, Journal of Photochemistry and Photobiology, A: Chemistry, 85 247-255 (1995)
[166] B. Singhal, A. Porwal, A. Sharma, R. Ameta, S.C. Ameta,Photocatalytic degradation of cetylpyridinium chloride over titanium dioxide powder, Journal of Photochemistry and Photobiology A: Chemistry, 108 85-88 (1997)
[167] R. Ganesh, G.D. Boardman, D. Michelsen,Fate of azo dyes in sludges, Water Research, 28 1367-1376 (1994)
[168] M. Gratzel,Energy Resources Through Photochemistry and Catalysis, (1983)
[169] E. Plattner, C. Comninellis,Process Technologies for Water Treatment, 205 (1988)
[170] K. Vinodgopal, D.E. Wynkoop, P.V. Kamat,Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, Acid Orange 7, on TiO2 particles using visible light, Environmental Science and Technology, 30 1660-1666 (1996)
[171] E.J. Weber,Chemical- And sediment-mediated reduction of the azo dye disperse blue 79, Environmental Science and Technology, 29 1163-1170 (1995)
[172] A. Wieckowski,Interfacial Electrochemistry: Theory, Experiment, and Applications, (1999)
[173] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga,Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 269-271 (2001)
[174] Y. Bessekhouad, D. Robert, J.V. Weber,Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, Journal of Photochemistry and Photobiology A: Chemistry, 163 569-580 (2004)
[175] O. Carp, C.L. Huisman, A. Reller,Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, 32 33-177 (2004)
[176] K.C. Chen, F.C.N. Hong,Synthesis of functional diamond-like carbon nanocomposite films containing titanium dioxide nanoparticles, Thin Solid Films, 518 7320-7323 (2010)
[177] A. Fujishima, T.N. Rao, D.A. Tryk,Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 1-21 (2000)
[178] P.R. Gogate, A.B. Pandit,A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions, Advances in Environmental Research, 8 501-551 (2004)
[179] K. Hayat, M.A. Gondal, M.M. Khaled, Z.H. Yamani, S. Ahmed,Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3, Journal of Hazardous Materials, 186 1226-1233 (2011)
[180] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan,Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials and Solar Cells, 77 65-82 (2003)
[181] O. Savadogo, P. Beck,Five percent platinum-tungsten oxide-based electrocatalysts for phosphoric acid fuel cell cathodes, Journal of the Electrochemical Society, 143 3842-3846 (1996)
[182] O. Savadogo, A. Essalik,Effect of platinum particle size on the oxygen reduction reaction on 2% Pt-1% H2WO4 in phosphoric acid, Journal of the Electrochemical Society, 143 1814-1821 (1996)
[183] P. Shen, K. Chen, A.C.C. Tseung,Co-deposited Pt-WO3 electrodes. Part 1. - Methanol oxidation and in situ FTIR studies, Journal of the Chemical Society, Faraday Transactions, 90 3089-3096 (1994)
[184] P.K. Shen, K.Y. Chen, A.C.C. Tseung,Performance of CO-electrodeposited Pt-Ru/WO3 electrodes for the electrooxidation of formic acid at room temperature, Journal of Electroanalytical Chemistry, 389 223-225 (1995)
[185] K. Vinodgopal, P.V. Kamat,Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films, Environmental Science and Technology, 29 841-845 (1995)
[186] T. Hisanaga, K. Harada, K. Tanaka,Photocatalytic degradation of organochlorine compounds in suspended TiO2, Journal of Photochemistry and Photobiology, A: Chemistry, 54 113-118 (1990)
[187] C.O. Avellaneda, L.O.S. Bulhoes,Photochromic properties of WO3 and WO3:X (X=Ti, Nb, Ta and Zr) thin films, Solid State Ionics, 165 117-121 (2003)
[188] C. Bechinger, E. Wirth, P. Leiderer,Photochromic coloration of WO3 with visible light, Applied Physics Letters, 68 2834-2836 (1996)
[189] L.H. Dao, A. Guerti, M.T. Nguyen,Proceedings of the Electrochemical Society, Electrochromic Materials, PV90-2 30 (1990)
[190] S.K. Deb,Opportunities and challenges in science and technology of WO3 for electrochromic and related applications, Solar Energy Materials and Solar Cells, 92 245-258 (2008)
[191] W.H. Glaze, F. Beltran, T. Tuhkanen, J.-W. Kang,Chemical models of advanced oxidation processes, Water pollution research journal of Canada, 27 23-42 (1992)
[192] M. Hepel,Electrode-solution interface studied with electrochemical quartz crystal nanobalance, Interfacial Electrochemistry, 599-630 (1999)
[193] M. Hepel, J. Luo,Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes, Electrochimica Acta, 47 729-740 (2001)
[194] N.H. Ince,!§Critical!‥ effect of hydrogen peroxide in photochemical dye degradation, Water Research, 33 1080-1084 (1999)
[195] H.H. Kung, H.S. Jarrett, A.W. Sleight, A. Ferretti,Semiconducting oxide anodes in photoassisted electrolysis of water, Journal of Applied Physics, 48 2463-2469 (1977)
[196] O. Legrini, E. Oliveros, A.M. Braun,Photochemical processes for water treatment, Chemical Reviews, 93 671-698 (1993)
[197] H.W. Prengle, C.E. Mauk,NEW TECHNOLOGY: OZONE/UV CHEMICAL OXIDATION WASTEWATER PROCESS FOR METAL COMPLEXES, ORGANIC SPECIES AND DISINFECTION, AIChE Symposium Series, 74 228-244 (1978)
[198] H. Purnama,Photocatalytic decolouration of reactive orange 16 (R3R) dye, Gelagar, 16 85-93 (2005)
[199] J. Staehelln, J. Hoigne,Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide, Environmental Science and Technology, 16 676-681 (1982)
[200] P. Stepnowski, E. Siedlecka, P. Behrend, B. Jastorff,Enhanced photo-degradation of contaminants in petroleum refinery wastewater, Water Research, 36 2167-2172 (2002)
[201] W. Stumm, Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systems, John Wiley & Son Inc., 1992.
[202] C. Von Sonntag, in, 2008, pp. 1015-1021.
[203] O. Legrini, E. Oliveros, A. Braun,Photochemical processes for water treatment, Chemical Reviews, 93 671-698 (1993)
[204] L. Wenhua, L. Hong, C. Sao''an, Z. Jianqing, C. Chunan,Kinetics of photocatalytic degradation of aniline in water over TiO2 supported on porous nickel, Journal of Photochemistry and Photobiology A: Chemistry, 131 125-132 (2000)
[205] M. Aceituno, C.D. Stalikas, L. Lunar, S. Rubio, D. Perez-Bendito,H2O2/TiO2 photocatalytic oxidation of metol. Identification of intermediates and reaction pathways, Water Research, 36 3582-3592 (2002)
[206] G. Ruppert, R. Bauer, G. Heisler,The photo-Fenton reaction—an effective photochemical wastewater treatment process, Journal of Photochemistry and Photobiology A: Chemistry, 73 75-78 (1993)
[207] J.L. Boulnois,Photophysical processes in recent medical laser developments: a review, Lasers in Medical Science, 1 47-66 (1986)
[208] A. Cassano, P. Silveston, J. Smith,Photochemical reaction engineering, Industrial & Engineering Chemistry, 59 18-38 (1967)
[209] J.H. Clark, Chemistry of waste minimization, Springer Netherlands, 1995.
[210] M. Fujihira, Y. Satoh, T. Osa,Heterogeneous photocatalytic oxidation of aromatic compounds on TiO 2, Nature, 293 206-208 (1981)
[211] R.W. Legan,Ultraviolet light takes on CPI role, Chemical Engineer, 89 95-100 (1982)
[212] L. Salem,Theory of photochemical reactions, Science, 191 822 (1976)
[213] B.E. Noltingk, E.A. Neppiras,Cavitation produced by ultrasonics, Proceedings of the Physical Society. Section B, 63 674 (1950)
[214] V. Ramamurthy, Photochemistry in organized and constrained media, Wiley-VCH, 1991.
[215] N.S. Lewis,An analysis of charge transfer rate constants for semiconductor/liquid interfaces, Annual Review of Physical Chemistry, 42 543-580 (1991)
[216] Z. Zou, J. Ye, K. Sayama, H. Arakawa,Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, (2001)
[217] A. Mills, S.L. Hunte,An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology-Chemistry Section, 108 1-36 (1997)
[218] 吳政峰,溫度和濕度效應對光催化分解氣相揮發性有機物之影響, (2005)
[219] G. Rothenberger, J. Moser, M. Graetzel, N. Serpone, D.K. Sharma,Charge carrier trapping and recombination dynamics in small semiconductor particles, Journal of the American Chemical Society, 107 8054-8059 (1985)
[220] S.D. Faust, O.M. Aly, Adsorption processes for water treatment, Butterworth Boston, MA, 1987.
[221] P. Pichat, J. Herrmann,Adsorption/desorption. Related mobility and reactivity in photocatalysis, Photocatalysis-Fundamentals and Applications, eds. N, 217-250 (1989)
[222] 黃柳青譯,化工動力學與反應設計, 科技圖書, (1986)
[223] H.S. Fogler, Elements of chemical reaction engineering, Prentice-Hall International London, 1999.
[224] P.F. Roessler, B.F. Severin,Ultraviolet light disinfection of water and wastewater, Modeling Disease Transmission and its Prevention by Disinfection, 313-368
[225] R.F. Howe, M. Gratzel,EPR study of hydrated anatase under UV irradiation, Journal of Physical Chemistry, 91 3906-3909 (1987)
[226] I. Izumi, W.W. Dunn, K.O. Wilbourn, F.R.F. Fan, A.J. Bard,Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders, The Journal of Physical Chemistry, 84 3207-3210 (1980)
[227] N. Serpone, E.P. Elizzetti, Fundamentals and Applications, New York: Wiley, 1989.
[228] F.D. Snell, C.L. Hilton, Encyclopedia of industrial chemical analysis, Interscience publishers, 1972.
[229] R.G. Zepp,Factors affecting the photochemical treatment of hazardous waste, Environmental science & technology, 22 256-257 (1988)
[230] L. Amalric, C. Guillard, P. Pichat,Use of catalase and superoxide dismutase to assess the roles of hydrogen peroxide and superoxide in the TiO2 or ZnO photocatalytic destruction of 1,2-dimethoxybenzene in water, Research on Chemical Intermediates, 20 579-594 (1994)
[231] M. Nair, W. Jacoby, D. Blake, T. Milne, in, 1992.
[232] J.C. Crittenden, S. Hu, D.W. Hand, S.A. Green,A kinetic model for H2O2/UV process in a completely mixed batch reactor, Water Research, 33 2315-2328 (1999)
[233] M.A. Gondal, M.N. Sayeed, A. Alarfaj,Activity comparison of Fe2O3, NiO, WO3, TiO2 semiconductor catalysts in phenol degradation by laser enhanced photo-catalytic process, Chemical Physics Letters, 445 325-330 (2007)
[234] R.W. Matthews,Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand, Water Research, 25 1169-1176 (1991)
[235] R.P.S. Suri, J. Liu, D.W. Hand, J.C. Crittenden, D.L. Perram, M.E. Mullins,Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water, Water Environment Research, 65 665-673 (1993)
[236] H. Liljestrand, M. Sattler,Photocatalytic oxidation processes for indoor air pollution, AIR & WASTE MANAGEMENT ASSOCIATION, PITTSBURGH, PA 15222(USA).[np]. (1996)
[237] C. Wong, W. Chu,The hydrogen peroxide-assisted photocatalytic degradation of alachlor in TiO2 suspensions, Environmental Science & Technology, 37 2310-2316 (2003)
[238] F.J. Millero,Effect of ionic interactions on the oxidation of Fe (II) and Cu (I) in natural waters* 1, Marine Chemistry, 28 1-18 (1989)
[239] Y. Ogata, K. Tomizawa, K. Takagi,Photo-oxidation of formic, acetic, and propionic acids with aqueous hydrogen peroxide, Canadian Journal of Chemistry, 59 14-18 (1981)
[240] D.F. Ollis, in, ACS Publications, 1993, pp. 18-18.
[241] S.F. Chen, G.Y. Cao,Effects of H2O2 metal ions etc. on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos, Ganguang Kexue yu Guanghuaxue/Photographic Science and Photochemistry, 20 435 (2002)
[242] W. Liu, S. Chen, W. Zhao, S. Zhang,Study on the photocatalytic degradation of trichlorfon in suspension of titanium dioxide, Desalination, 249 1288-1293 (2009)
[243] B.J.P.A. Cornish, L.A. Lawton, P.K.J. Robertson,Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide, Applied Catalysis B: Environmental, 25 59-67 (2000)
[244] T.Y. Wei, Y.Y. Wang, C.C. Wan,Photocatalytic oxidation of phenol in the presence of hydrogen peroxide and titanium dioxide powders, Journal of Photochemistry and Photobiology A: Chemistry, 55 115-126 (1990)
[245] V. Iliev, D. Tomova, S. Rakovsky, A. Eliyas, G.L. Puma,Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation, Journal of Molecular Catalysis A: Chemical, 327 51-57 (2010)
[246] 李芳柏,WO3TiO2納米材料的製備及光催化性能, 物理化學學報, 16 5 (2000)
[247] T. Huang, X. Lin, J. Xing, W. Wang, Z. Shan, F. Huang,Photocatalytic activities of hetero-junction semiconductors WO3/SrNb2O6, Materials Science and Engineering: B, 141 49-54 (2007)
[248] S.T. Martin, C.L. Morrison, M.R. Hoffmann,Photochemical mechanism of size-quantized vanadium-doped TiO2 particles, The Journal of Physical Chemistry, 98 13695-13704 (1994)
[249] X. Wang, J.G. Li, H. Kamiyama, Y. Moriyoshi, T. Ishigaki,Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron (III)-doped TiO2 nanopowders under UV and visible light irradiation, The Journal of Physical Chemistry B, 110 6804-6809 (2006)
[250] 徐. 姜萍,硬質合金的回收技術, 中國有色金屬, 14 2 (2008)
[251] M. Qamar, M. Gondal, Z. Yamani,Synthesis of highly active nanocrystalline WO3 and its application in laser-induced photocatalytic removal of a dye from water, Catalysis Communications, 10 1980-1984 (2009)
[252] 吳世彥,以UV/H2O2高級氧化程序 處理4-氯酚之研究, 國立臺北科技大學化學工程所, (2005)
[253] U.A. Joshi, J.R. Darwent, H.H.P. Yiu, M.J. Rosseinsky,The effect of platinum on the performance of WO3 nanocrystal photocatalysts for the oxidation of Methyl Orange and iso‐propanol, Journal of Chemical Technology and Biotechnology, (2011)
[254] Y. Ku, C.B. Hsieh,Photocatalytic decomposition of 2, 4-dichlorophenol in aqueous TiO2 suspensions, Water Research, 26 1451-1456 (1992)
[255] D. Bahnemann, D. Bockelmann, R. Goslich,Mechanistic studies of water detoxification in illuminated TiO2 suspensions, Solar Energy Materials, 24 564-583 (1991)
[256] W. Tang, Z. Zhang, H. An, M. Quintana, D. Torres,TiO2/UV photodegradation of azo dyes in aqueous solutions, Environmental Technology, 18 1-12 (1997)
[257] R. Jiang, H. Zhu, X. Li, L. Xiao,Visible light photocatalytic decolourization of CI Acid Red 66 by chitosan capped CdS composite nanoparticles, Chemical Engineering Journal, 152 537-542 (2009)
[258] A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang,Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst, Journal of Hazardous Materials, 177 781-791 (2010)
[259] D. Monllor‐Satoca, L. Borja, A. Rodes, R. Gomez, P. Salvador,Photoelectrochemical Behavior of Nanostructured WO3 Thin‐Film Electrodes: The Oxidation of Formic Acid, ChemPhysChem, 7 2540-2551 (2006)
[260] J.Q. Chen, D. Wang, M.X. Zhu, C.J. Gao,Study on degradation of methyl orange using pelagite as photocatalyst, Journal of Hazardous Materials, 138 182-186 (2006)
[261] S. Al-Qaradawi, S.R. Salman,Photocatalytic degradation of methyl orange as a model compound, Journal of Photochemistry and Photobiology A: Chemistry, 148 161-168 (2002)
[262] M. Rashed, A. El-Amin,Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources, International Journal of Physical Sciences, 2 73!V81 (2007)
[263] V. Pareek, S. Chong, M. Tade, A.A. Adesina,Light intensity distribution in heterogenous photocatalytic reactors, Asia-Pacific Journal of Chemical Engineering, 3 171-201 (2008)
[264] I.K. Konstantinou, T.A. Albanis,TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations:: A review, Applied Catalysis B: Environmental, 49 1-14 (2004)
[265] R.J. Davis, J.L. Gainer, G. O''Neal, I.W. Wu,Photocatalytic decolorization of wastewater dyes, Water Environment Research, 66 50-53 (1994)
[266] I. Poulios, I. Tsachpinis,Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides, Journal of Chemical Technology and Biotechnology, 74 349-357 (1999)
[267] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan,Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO 2, Solar Energy Materials and Solar Cells, 77 65-82 (2003)
[268] Y. Li, X. Li, J. Li, J. Yin,Photocatalytic degradation of methyl orange in a sparged tube reactor with TiO 2-coated activated carbon composites, Catalysis Communications, 6 650-655 (2005)



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top