跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 21:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊尚達
研究生(外文):Shang-Da Yang
論文名稱:雙效溴化鋰吸收式冰水機之熱力經濟學最適化設計
論文名稱(外文):Thermoeconomic Optimization of Double-Effect LiBr Absorption Chillers
指導教授:鄭智成鄭智成引用關係
口試委員:王國彬陳誠亮林顯聖
口試日期:2012-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:123
中文關鍵詞:雙效溴化鋰吸收式冰水機不可逆性性能係數(COP)可用能效率熱力經濟學最適化設計結構法
外文關鍵詞:double-effect lithium bromide absorption chillerirreversibilitycoefficient of performanceexergy efficiencythermoeconomicoptimizationstructural method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:452
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對雙效平行型與串聯型溴化鋰吸收式冰水機進行熱力學分析與熱力經濟學最適化設計。首先根據系統中各個熱交換器單元質量守恆、能量守恆與狀態方程式建立雙效溴化鋰吸收式冰水機的數學模式,然後以此模式對雙效吸收式冰水機做熱力學分析,計算每個單元中的不可逆性和能量損失情況,並探討整個雙效吸收式冰水系統性能係數(COP)及可用能效率的影響。
最後以熱力經濟學的概念對雙效吸收式冰水機進行最適化設計,此方法即為結構法。結構法結合了熱力學上的考量以及經濟學上的最適化,其優點為個別單元能夠獨立進行最適化,不必同時考慮整體系統的最適化,同時藉由結構係數的導入,可導出計算冰水機系統中各個單元最適化熱交換器面積方程式。最後以此最適化面積討論系統重要設計參數(循環比、溴化鋰濃溶液濃度及分配比)對性能係數、可用能效率、不可逆性及成本上的影響。模擬結果顯示,經過最適化設計後,雙效溴化鋰吸收式冰水機的年總成本和性能係數都會獲得改善,而能量損失的變化情形則與系統年總操作時間有關,可用能效率會隨年總操作時間之增加而提升。

This study presents the thermodynamic analysis and thermoeconomic optimization of double-effect (parallel-type and series-type) lithium bromide (LiBr) absorption chillers. The mathematical model of double-effect LiBr absorption chillers is first established based on mass balance relations, energy balance relations, and constitutive state equations of each heat exchanger unit. Then, this study analyzes the thermodynamic properties of the double-effect absorption chiller, and calculates the irreversibility and energy loss of each unit. The effects of the coefficient of performance (COP) and exergy efficiency are investigated.
This study conducts the optimum design of the double-effect absorption chiller using a thermoeconomic method, known as the structural method. This method not only takes the thermodynamic considerations into account but also considers the economic optimization. The advantage of using the structural method for thermoeconomic optimization is that the various elements of the system can be optimized on their own. A simple equation to calculate the optimum area of each heat exchanger can be derived by introducing the coefficient of structural bond (CSB). The effects of important design parameters of the system (solution circulation ratio, LiBr concentration and distribution ratio) on the coefficient of performance (COP), exergy efficiency, irreversibility and total annual cost are investigated. Simulation results show that the total annual cost and the COP are improved after the optimization. The condition of energy loss depends on the annual operation time so that the exergy efficiency is improved for an increasing annual operation time.

目 錄

摘 要 i
ABSTRACT ii
致 謝 iv
目 錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.2.1模式建立 2
1.2.2熱力學分析 4
1.2.3熱力經濟學最適化設計 4
1.3研究動機 5
1.4章節組織 6
第二章 溴化鋰冰水機介紹 7
2.1冰水機的基本介紹 7
2.2吸收式冰水機工作流體介紹 10
2.3吸收式冰水機的運作原理 11
第三章 雙效吸收式冰水機之數學模式的建立 18
3.1雙效平行型吸收式冰水機 18
3.1.1質量守恆 19
3.1.2狀態方程式 21
3.1.3能量守恆 23
3.1.4雙效平行型吸收式冰水機之穩態模擬 26
3.2雙效串聯型吸收式冰水機 31
3.2.1質量守恆 32
3.2.2狀態方程式 33
3.2.3能量守恆 35
3.2.4雙效串聯型吸收式冰水機之穩態模擬 38
3.3本研究所使用的雙效平行型與串聯型數學模式 42
3.3.1本研究雙效平行型吸收式冰水機之數學模式 43
3.3.2本研究雙效串聯型吸收式冰水機之數學模式 46
3.3.3本研究雙效平行型與串聯型性能分析與模擬結果 48
第四章 雙效吸收式冰水機之熱力學分析 52
4.1可用能介紹 54
4.1.1物理可用能(physical exergy) 54
4.1.2化學可用能(chemical exergy) 55
4.1.3動能可用能(kinetic exergy) 55
4.1.4位能可用能(potential exergy) 55
4.2雙效吸收式冰水機可用能數學式 56
4.2.1物理可用能(physical exergy) 56
4.2.2化學可用能(chemical exergy) 56
4.3雙效吸收式冰水機可用能計算結果 58
4.4不可逆性介紹 62
4.5雙效吸收式冰水機不可逆性數學式 64
4.5.1雙效平行型不可逆性數學式 64
4.5.2雙效串聯型不可逆性數學式 66
4.6雙效吸收式冰水機不可逆性與可用能效率之結果 69
4.6.1雙效平行型與串聯型之不可逆性結果 69
4.6.2雙效平行型與串聯型之不可逆性及可用能效率分析 71
第五章 雙效吸收式冰水機最適化設計 73
5.1CSB介紹 73
5.2雙效吸收式冰水機CSB計算結果 76
5.2.1雙效平行型CSB分析 77
5.2.2雙效串聯型CSB分析 82
5.3熱力經濟學最適化介紹 87
5.4雙效吸收式冰水機熱力經濟學最適化計算結果 90
5.5雙效吸收式冰水機參數對最適化面積結果分析 96
5.5.1雙效平行型參數對最適化面積結果分析 96
5.5.2雙效串聯型參數對最適化面積結果分析 101
5.5.3雙效平行型與串聯型在不同操作時間下之參數分析 104
第六章 總結與未來展望 115
6.1總結 115
6.2未來展望 116
參考文獻 117
符號彙編 120


參考文獻

1.A. Huicochea, W. Rivera, G. Gutierrez-Urueta, J. C. Bruno and A. Coronas, "Thermodynamic analysis of a trigeneration system consisting of a micro gas turbine and a double effect absorption chiller," Applied Thermal Engineering, vol. 31, no. 16, 2011, pp. 3347-3353.
2.M. S. A. M. S. Ahmed and S. I. U-H. Gilani, "Steady State Simulation of a Double-Effect Steam Absorption Chiller," Journal of Applied Sciences, vol. 11, 2011, pp. 2018-2023.
3.X. Liao and R. Radermacher, "Absorption chiller crystallization control strategies for integrated cooling heating and power systems," International journal of Refrigeration, vol. 30, no. 5, 2007, pp. 904-911.
4.M. Arun, M. Maiya and S. S. Murthy, "Performance comparison of double-effect parallel-flow and series flow water–lithium bromide absorption systems," Applied thermal engineering, vol. 21, no. 12, 2001, pp. 1273-1279.
5.L. G. Farshi, S. S. Mahmoudi and M. Rosen, "Analysis of crystallization risk in double effect absorption refrigeration systems," Applied Thermal Engineering, vol. 31, no.10, 2011, pp. 1712-1717.
6.G. P. Xu and Y. Q. Dai, "Theoretical analysis and optimization of a double-effect parallel-flow-type absorption chiller," Applied thermal engineering, vol. 17, no. 2, 1997, pp. 157-170.
7.G. P. Xu, Y. Q. Dai, K. W. Tou and C. P. Tso, "Theoretical analysis and optimization of a double-effect series-flow-type absorption chiller," Applied thermal engineering, vol. 16, no. 12, 1996, pp. 975-987.
8.林志謙,溴化鋰吸收式冰水機的熱力學分析與熱力經濟學最適化設計,碩士論文,臺北科技大學化學工程研究所,臺北,2011。
9.G. Feuerecker, J. Scharfe, I. Greiter, C. Frank and G. Alfeld, "Measurement of thermophysical properties of aqueous LiBr-solutions at high temperatures and concentrations," International Absorption Heat Pump Conference ASME, vol. 31, 1993, pp. 493-99.
10.Y. Kaita, "Thermodynamic properties of lithium bromide–water solutions at high temperatures," International Journal of Refrigeration, vol. 24, no. 5, 2001, pp. 374-390.
11.D. Kim and C. I. Ferreira, "A Gibbs energy equation for LiBr aqueous solutions," International journal of refrigeration, vol. 29, no. 1, 2006, pp. 36-46.
12.R. P‐Bereche, R. Gonzales, and S. A. Nebra, "Exergy calculation of lithium bromide–water solution and its application in the exergetic evaluation of absorption refrigeration systems LiBr‐H2O," International Journal of Energy Research, vol. 36, no. 2, 2012, pp. 166-181.
13.A. Arora and S. Kaushik, "Theoretical analysis of LiBr/H2O absorption refrigeration systems," International Journal of Energy Research, vol. 33, no. 15, 2009, pp. 1321-1340.
14.T. J. Kotas, "The exergy method of thermal plant analysis," Institution of Chemical Engineers, vol. 64, 1985, pp. 212-229.
15.M-T. Ke, Absorption chiller, National Taipei University of Technology Department of Energy and Refrigerating Air-Conditioning Engineering.
16.蔡尤溪,吸收式冷凍空調技術專輯,臺北,中誌文化事業有限公司,1999, 第14-23頁。
17.M. Holmgren, X Steam for Matlab. www. x-eng. com, 2006.
18.I. Dincer and M. A. Rosen, Exergy: energy, environment and sustainable development. USA:Elsevier publications, 2012.
19.R. D. Misra, P. K. Sahoo and A. Gupta, "Thermoeconomic optimization of a single effect water/LiBr vapour absorption refrigeration system," International Journal of Refrigeration, vol. 26, no. 2, 2003, pp. 158-169.
20.D. Boer, B. H. Gebreslassie, M. Medrano and M. Nogues, "Effect of Internal Heat Recovery in Ammonia-Water Absorption Cooling Cycles: Exergy and Structural Analysis," International Journal of Thermodynamics, vol. 12, no. 1, 2009, pp. 17-27.
21.D. Boer, M. Medrano and M. Nogues, "Exergy and structural analysis of an absorption cooling cycle and the effect of efficiency parameters," International Journal of Thermodynamics, vol. 8, no. 4, 2005, pp. 191-198.
22.B. H. Gebreslassie, M. Medrano, F. Mendes and D. Boer, "Optimum heat exchanger area estimation using coefficients of structural bonds: Application to an absorption chiller," International Journal of Refrigeration, vol. 33, no. 3, 2010, pp. 529-537.
23.O. Kızılkan, A. Şencan and S. A. Kalogirou, "Thermoeconomic optimization of a LiBr absorption refrigeration system," Chemical Engineering and Processing: Process Intensification, vol. 46, no. 12, 2007, pp. 1376-1384.
24.W. G. Colella and R. Timme, "Optimizing Operation of Stationary Fuel Cell Systems (FCS) within District Cooling and Heating Networks," Henry B. Gonzalez Convention Center, San Antonio, Texas, 2010, pp. 1-114.
25.張志成,吸收式冷凍循環系統性能模擬解析,碩士論文,臺北科技大學冷凍空調工程系碩士班,臺北,2001。




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top