(3.235.25.169) 您好!臺灣時間:2021/04/18 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳淑文
研究生(外文):Shu-Wen Chen
論文名稱:探討生物添加分子對人工關節材料摩擦潤滑行為之影響
論文名稱(外文):Investigating the Characteristics of Biomolecular Additives on the Tribological Behavior of Artificial Joint Materials
指導教授:方旭偉方旭偉引用關係
口試委員:楊大毅黃昌弘盧永昌
口試日期:2013-06-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:95
中文關鍵詞:超高分子量聚乙烯鈷鉻鉬合金l生物添加分子摩擦性質
外文關鍵詞:UHMWPECo-Cr-Mo alloyBiomolecularFriction
相關次數:
  • 被引用被引用:4
  • 點閱點閱:148
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人工關節材料以超高分子量聚乙烯(UHMWPE)與鈷鉻鉬合金(CoCrMo alloy)最為常見,而超高分子量聚乙烯於對磨時所產生的磨耗顆粒會誘導人體內的免疫反應而造成植入物與骨間隙之骨溶解現象(osteolysis),進而加速人工關節鬆脫,減少人工關節之使用年限。
人體滑液膜分泌關節液提供關節對磨表面的緩衝與保護,其組成豐富且各成分藉不同的機制提供潤滑作用,我們已從先前研究中找出潤滑液的關鍵分子,分別為關節液中占比最高的白蛋白(albumin),其對摩擦力影響顯著;而玻尿酸(HA)則具有降低對磨表面摩擦係數的能力。
本研究利用pin-on-disc(POD)摩擦測試系統,在邊界潤滑的運行條件下進行人工關節對磨材料的摩擦力測試,探討生物分子之摩擦潤滑行為。實驗中使用小牛血清(BCS)以符合國際標準的比例25v/v%當作潤滑液基底,添加玻尿酸(HA)以及與同屬多醣類且具生物性相容性分子如羧甲基纖維素(CMC)、藻酸鈉(AA)、角叉菜膠(CRG)等四種生物分子,探討不同成分存於潤滑液之中的摩擦行為與潤滑表現並進行比較分析,實驗結果發現藻酸鈉為具有潤滑潛力的生物添加分子,並可藉由存於潤滑液中的含量提升而增加潤滑表現,潤滑液含有12.5mg/ml藻酸鈉具有最低的摩擦係數。並進一步探討生物添加分子存在於白蛋白溶液中摩擦性質之差異,藉以了解各分子之潤滑行為;研究結果顯示白蛋白溶液含有單成分生物添加分子均可改善潤滑現象並以添加藻酸鈉可獲得的摩擦係數最小,此結果與牛血清之結果相呼應。
此外,進行多成分生物添加分子混合潤滑液之研究,依據實驗結果建議牛血清中含有4.5mg/ml之藻酸鈉與4.5mg/ml角叉菜膠對人工關節材料具顯著的潤滑效果,希望日後能夠進行人工關節模擬器的實驗進一步地加以驗證,以期找出人工關節潤滑液之最佳比例,降低人工關節的使用者二次置換的比率。


Ultra-high molecular molecular weight polyethylene (UHMWPE) and Co-Cr-Mo alloy are common artificial joint materials.Wear debris of UHMWPE will induce immune response of human body which leads to osteolysis.Moreover, it will accelerate the loosening of artificial joint and reduce the lifetime of artificial joints. The compositions of human synovial fluid are abundant. From previous studies, we found out that the key moleculars affecting the tribological behavior of artificial joints are albumin and hyaluronic acid.
In this study, we applied the pin-on-disc friction tests to screen out the potential bio-molecular additives to reduce friction.We applied 25v/v% bovine calf serum as lubricant which is used in artificial joint simulator.Hyaluronic acid, carboxymethyl cellulose, alginic acid sodium, carrageenan are applied as the additives in BCS in this study. We investigated and analyzed the tribiological behavior of lubricants with various compositions. The result showed that alginic acid sodium is the most effective biomolecular additive. The lowest of friction of coefficient will be shown when adding 12.5mg/ml of alginic acid sodium.
Furthermore, we investigated the difference in the lubrication characteristics of artificial joint materials when albumin solution was used as lubricant. The testing results show that the lubrication can be improved after adding the single molecule into albumin under boundary lubrication. Adding alginic acid could lead to the lowest friction of coefficient which is similar to the result when BCS was used as lubricant.
Moreover, this study suggests that the most effective combination of lubricant composition is bovine calf serum containing 4.5mg/ml of alginic acid and 4.5mg/ml of carrageenan. It shall be further designed to run the artificial joint simulator tests to verify the phenomena observed in this study.


摘 要 i
ABSTRACT iii
誌 謝 v
目錄 vii
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1人工關節置換 1
1.2 研究動機 3
第二章 文獻回顧 5
2.1 人工關節 5
2.1.1 人工關節組成元件 5
2.1.2 人工關節材料 6
2.1.3 人工關節毀損 10
2.2 生物摩擦學 11
2.2.1摩擦 11
2.2.2潤滑 12
2.3 關節液 14
2.4 生物分子與摩擦行為相關研究 16
2.4.1 分子間作用力 17
2.4.2 不同關節液成分對摩擦行為之影響 18
2.4.3 摩擦熱效應對生物潤滑分子摩擦行為之影響 20
2.5 生物添加分子 24
2.5.1 玻尿酸(Hyaluronic acid,HA) 25
2.5.2 羧甲基纖維素(Sodium Carboxymethyl Cellulose,CMC) 27
2.5.3 藻酸鈉(Na-Alginate,AA) 28
2.5.4 角叉藻二糖(Carrageenan,CRG) 30
第三章 關鍵問題與研究方法 32
3.1 問題定義 32
3.1.1 生物添加分子特性對人工關節元件之摩擦行為 32
3.2 研究方法 32
3.2.1 評估生物添加分子之摩擦行為 34

3.2.2 評估生物添加分子之流變特性 34
3.2.3 評估生物添加分子之摩擦化學變化 34
第四章 實驗方法 35
4.1 試劑配置 35
4.2 摩擦測試實驗 36
4.2.1 目的 36
4.2.2 實驗設備 36
4.2.3 實驗材料 37
4.2.4 實驗步驟 38
4.2.5 實驗數據分析 39
4.3黏度測試實驗 39
4.3.1 目的 39
4.3.2 實驗設備 39
4.3.3實驗器材 40
4.3.4 實驗步驟 41
4.4 蛋白質構形測試實驗 42
4.4.1 目的 42
4.4.2 實驗步驟 43
第五章 生物添加分子於關節潤滑液之摩擦行為 44
5.1目的 44
5.2 生物添加分子對人工關節潤滑液之摩擦行為 44
5.2.1 單成份生物添加分子之摩擦性質 44
5.2.2 多成份生物添加分子之摩擦性質 52
第六章 生物添加分子對白蛋白摩擦行為之影響 56
6.1 目的 56
6.2生物分子與白蛋白之交互作用 56
6.2.1 生物添加分子於白蛋白之摩擦性質 56
6.2.2生物添加分子於白蛋白之流變性質 62
6.2.3 生物添加分子對蛋白質結構之影響 64
第七章 討論 72
第八章 結論與建議 79
8.1結論 79
8.2建議 79

參考文獻 81
附錄A 小牛血清成分檢驗表 89
附錄B CD Test-HSA+Biomolecular 90
附錄C 藥品試劑 93
附錄D Friction Test- HA 94
附錄E 實驗設備器材 95




[1]王香蘋, "1999年台灣地區中老年人健康狀況的探討," 弘光學報, vol. 43, pp. 95-109, 2004.
[2]M. A. McGee, et al., "Implant retrieval studies of the wear and loosening of prosthetic joints: a review," Wear, vol. 241, pp. 158-165, 2000.
[3]D. Dowson, "New joints for the Millennium: wear control in total replacement hip joints," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 215, pp. 335-358, 2001.
[4]H. W. Fang, et al., Ultra-High Molecular Weight Polyethylene Wear Particles Effects on Bioactivity. WASHINGTON: NIST Special Publication 1002, 2003.
[5]M. McGee, et al., "The role of polyethylene wear in joint replacement failure," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 211, pp. 65-72, 1997.
[6]T. M. Wright, et al., Implant wear: the future of total joint replacement: symposium, Oakbrook, Illinois, September 1995: Amer Academy of Orthopaedic, 1996.
[7]王成焘, et al., "人工关节失效的统计分析及其在技术发展中的重要作用 [J]," 医用生物力学, vol. 27, pp. 1-6, 2012.
[8]M. Bahraminasab and A. Jahan, "Material selection for femoral component of total knee replacement using comprehensive VIKOR," Materials & Design, vol. 32, pp. 4471-4477, 2011.
[9]L. Mattei, et al., "Lubrication and wear modelling of artificial hip joints: A review," Tribology International, vol. 44, pp. 532-549, 2011.
[10]S. M. Kurtz, "Chapter 4 - The Origins of UHMWPE in Total Hip Arthroplasty," in UHMWPE Biomaterials Handbook (Second Edition), M. K. Steven and P. D. Ph.D.A2 - Steven M. Kurtz, Eds., ed Boston: Academic Press, 2009, pp. 31-41.
[11]E. Oral, et al., "6.603 - Ultrahigh Molecular Weight Polyethylene Total Joint Implants," in Comprehensive Biomaterials, D. Editor-in-Chief: Paul, Ed., ed Oxford: Elsevier, 2011, pp. 29-49.
[12]B. Vamsi Krishna, et al., "Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures," Acta Biomaterialia, vol. 4, pp. 697-706, 2008.
[13]H. McKellop, et al., "Development of an extremely wear‐resistant ultra high molecular weight polythylene for total hip replacements," Journal of Orthopaedic Research, vol. 17, pp. 157-167, 2005.
[14]王盈錦, 生物醫學材料. 台北: 合記圖書出版社, 2002.
[15]M. Ohta, et al., "Wear resistance of lightly cross-linked ultrahigh-molecular-weight polyethylene crystallized from the melt under uniaxial compression," Wear, vol. 225–229, Part 1, pp. 312-318, 1999.
[16]O. K. Muratoglu, et al., "Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE)," Biomaterials, vol. 20, pp. 1463-1470, 1999.
[17]M. D. Ries and L. Pruitt, "Effect of Cross-linking on the Microstructure and Mechanical Properties of Ultra-High Molecular Weight Polyethylene," Clinical Orthopaedics and Related Research, vol. 440, pp. 149-156 2005.
[18]K. S. Katti, "Biomaterials in total joint replacement," Colloids and Surfaces B: Biointerfaces, vol. 39, pp. 133-142, 2004.
[19]M. Niinomi, "Recent metallic materials for biomedical applications," Metallurgical and Materials Transactions A, vol. 33, pp. 477-486, 2002/03/01 2002.
[20]J. B. Matthews, et al., "Comparison of the response of primary murine peritoneal macrophages and the U937 human histiocytic cell line to challenge with in vitro generated clinically relevant UHMWPE particles," Bio-medical materials and engineering, vol. 10, pp. 229-240, 2000.
[21]J. Matthews, et al., "Comparison of the response of three human monocytic cell lines to challenge with polyethylene particles of known size and dose," Journal of Materials Science: Materials in Medicine, vol. 12, pp. 249-258, 2001.
[22]T. R. Green, et al., "Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles," Journal of Biomedical Materials Research, vol. 53, pp. 490-497, 2000.
[23]J. B. Matthews, et al., "Evaluation of the response of primary human peripheral blood mononuclear phagocytes to challenge with in vitro generated clinically relevant UHMWPE particles of known size and dose," Journal of Biomedical Materials Research, vol. 52, pp. 296-307, 2000.
[24]T. Green, et al., "Polyethylene particles of a ‘critical size’are necessary for the induction of cytokines by macrophages in vitro," Biomaterials, vol. 19, pp. 2297-2302, 1998.
[25]E. Ingham and J. Fisher, "The role of macrophages in osteolysis of total joint replacement," Biomaterials, vol. 26, pp. 1271-1286, 2005.
[26]B. J. Hamrock, et al., Fundamentals of fluid film lubrication vol. 169: CRC, 2004.
[27]J. P. Gleghorn and L. J. Bonassar, "Lubrication mode analysis of articular cartilage using Stribeck surfaces," Journal of Biomechanics, vol. 41, pp. 1910-1918, 2008.
[28]D. Marsh, "Lipid-protein interactions in membranes," FEBS Letters, vol. 268, pp. 371-375, 1990.
[29]X. M. He, "Atomic structure and chemistry of human serum albumin," Nature, vol. 358, p. 209, 1992.
[30]T. Peters Jr, "Serum Albumin," in Advances in Protein Chemistry. vol. Volume 37, J. T. E. C.B. Anfinsen and M. R. Frederic, Eds., ed: Academic Press, 1985, pp. 161-245.
[31]S. Karimi and A. M. Alfantazi, "Electrochemical corrosion behavior of orthopedic biomaterials in presence of human serum albumin," Journal of the Electrochemical Society, vol. 160, pp. C206-C214, 2013.
[32]J. Q. Yao, "The influences of lubricant and material on polymer/CoCr sliding friction," Wear, vol. 255, pp. 780-784, 2003.
[33]R. A. Gatter, A practical handbook of joint fluid analysis vol. 2nd edition: Lea & Febiger (Philadelphia), 1991.
[34]A. Aurora, et al., "Effect of Lubricant Composition on the Fatigue Properties of Ultra-High Molecular Weight Polyethylene for Total Knee Replacement," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 220, pp. 541-551, April 1, 2006 2006.
[35]J. Charnley, The Lubrication of Animal Joints. Proceedings of the Symposium on Biomechanics, pp. 12-22, 1959.
[36]A. Wang, et al., "Lubrication and wear of ultra-high molecular weight polyethylene in total joint replacements," Tribology International, vol. 31, pp. 17-33, 1998.
[37]P. S. Walker, et al., "Wear testing of materials and surfaces for total knee replacement," Journal of Biomedical Materials Research, vol. 33, pp. 159-175, 1996.
[38]K. Rechendorff, et al., "Enhancement of protein adsorption induced by surface roughness," Langmuir, vol. 22, pp. 10885-10888, 2006.
[39]M. Widmer, et al., "Influence of polymer surface chemistry on frictional properties under protein-lubrication conditions: implications for hip-implant design," Tribology Letters, vol. 10, pp. 111-116, 2001/01/01 2001.
[40]Y. Sawae, et al., "Effect of synovia constituents on friction and wear of ultra-high molecular weight polyethylene sliding against prosthetic joint materials," Wear, vol. 216, pp. 213-219, 1998.
[41]K. S. K. Karuppiah, et al., "The effect of protein adsorption on the friction behavior of ultra-high molecular weight polyethylene," Tribology Letters, vol. 22, pp. 181-188, 2006/05/01 2006.
[42]K. M. N. Oates, et al., "Rheopexy of synovial fluid and protein aggregation," Journal of the Royal Society Interface, vol. 3, pp. 167-174, February 22, 2006 2006.
[43]W. Parker and P. S. Song, "Protein structures in SDS micelle-protein complexes," Biophysical Journal, vol. 61, pp. 1435-1439, 1992.
[44]E. L. Gelamo and M. Tabak, "Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 56, pp. 2255-2271, 2000.
[45]A. P. Imeson, et al., "On the nature of the interaction between some anionic polysaccharides and proteins," Journal of the Science of Food and Agriculture, vol. 28, pp. 661-668, 1977.
[46]A. P. Serro, et al., "Adsorption of albumin and sodium hyaluronate on UHMWPE: A QCM-D and AFM study," Colloids and Surfaces B: Biointerfaces, vol. 78, pp. 1-7, 2010.
[47]K. Nakashima, et al., "Influence of protein conformation on frictional properties of poly (vinyl alcohol) hydrogel for artificial cartilage," Tribology Letters, vol. 26, pp. 145-151, 2007.
[48]L. R. Gale, et al., "The role of SAPL as a boundary lubricant in prosthetic joints," Tribology International, vol. 40, pp. 601-606, 2007.
[49]M. Smith and P. Ghosh, "The synthesis of hyaluronic acid by human synovial fibroblasts is influenced by the nature of the hyaluronate in the extracellular environment," Rheumatology international, vol. 7, pp. 113-122, 1987.
[50]P. Ghosh and D. Guidolin, "Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: are the effects molecular weight dependent?," in Seminars in Arthritis and Rheumatism, 2002, pp. 10-37.
[51]K. Mabuchi, et al., "The effect of additive hyaluronic acid on animal joints with experimentally reduced lubricating ability," Journal of Biomedical Materials Research, vol. 28, pp. 865-870, 1994.
[52]R. W. Forsey, "The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model," Biomaterials, vol. 27, pp. 4581-4590, 2006.
[53]M. S. D Mazzucco, "The John Charnley Award paper: the role of joint fluid in the tribology of total joint arthroplasty," Clinical Orthopaedics and Related Research, vol. 426, pp. 17-32, 2004.
[54]黃彗婷, "關節液生物分子對人工關節摩擦行為之影響," 國立臺北科技大學博士論文, 2012.
[55]G. Bergmann, et al., "Frictional heating of total hip implants. Part 2: finite element study," Journal of Biomechanics, vol. 34, pp. 429-435, 2001.
[56]Z. Lu and H. McKellop, "Frictional heating of bearing materials tested in a hip joint wear simulator," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 211, pp. 101-108, January 1, 1997 1997.
[57]Mostafa Rezaei-Tavirani, et al., "Conformational Study of Human Serum Albumin in Pre-denaturation Temperatures by Differential Scanning Calorimetry,Circular Dichroism and UV Spectroscopy," Journal of Biochemistry and Molecular Biology, vol. 39, pp. 530-536, 2006.
[58]R. Wetzel, et al., "Temperature Behaviour of Human Serum Albumin," European Journal of Biochemistry, vol. 104, pp. 469-478, 1980.
[59]M. P. Heuberger, et al., "Protein-mediated boundary lubrication in arthroplasty," Biomaterials, vol. 26, pp. 1165-1173, 2005.
[60]H. Mishina and M. Kojima, "Changes in human serum albumin on arthroplasty frictional surfaces," Wear, vol. 265, pp. 655-663, 2008.
[61]A. Perczel, et al., "Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: A practical guide," Analytical Biochemistry, vol. 203, pp. 83-93, 1992.
[62]H.-W. Fang, et al., "Association of polyethylene friction and thermal unfolding of interfacial albumin molecules," Applied Surface Science, vol. 253, pp. 6896-6904, 2007.
[63]H.-W. Fang, et al., "Conformational and adsorptive characteristics of albumin affect interfacial protein boundary lubrication: From experimental to molecular dynamics simulation approaches," Colloids and Surfaces B: Biointerfaces, vol. 68, pp. 171-177, 2009.
[64]A. E. Sams and A. J. Nixon, "Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects," Osteoarthritis and Cartilage, vol. 3, pp. 47-59, 1995.
[65]W. N. Qi and S. P. Scully, "Extracellular collagen modulates the regulation of chondrocytes by transforming growth factor-β1," Journal of Orthopaedic Research, vol. 15, pp. 483-490, 1997.
[66]J. K. Francis Suh and H. W. T. Matthew, "Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review," Biomaterials, vol. 21, pp. 2589-2598, 2000.
[67]E. Balazs, "Therapeutic use of hyaluronan," Structural Chemistry, vol. 20, pp. 341-349, 2009/04/01 2009.
[68]S. J. OGSTON AG, "The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties.," The Journal of Physiology, vol. 119, pp. 244-252, Feb 27 1953.
[69]M. Benz, et al., "Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus," Journal of Biomedical Materials Research Part A, vol. 71A, pp. 6-15, 2004.
[70]D. Campoccia, et al., "Semisynthetic resorbable materials from hyaluronan esterification," Biomaterials, vol. 19, pp. 2101-2127, 1998.
[71]D. Campoccia, et al., "Quantitative assessment of the tissue response to films of hyaluronan derivatives," Biomaterials, vol. 17, pp. 963-975, 1996.
[72]B. P. Horkay F, Londono DJ, Hecht AM, Geissler E., "Ions in hyaluronic acid solutions.," Journal of Chemical Physics, vol. 131, 2009.
[73]R. Takahashi, et al., "Asymmetrical-Flow Field-Flow Fractionation with On-Line Multiangle Light Scattering Detection. 1. Application to Wormlike Chain Analysis of Weakly Stiff Polymer Chains," Biomacromolecules, vol. 4, pp. 404-409, 2003/03/01 2003.
[74]C. Foti, et al., "A prospective observational study of the clinical efficacy and safety of intra-articular sodium hyaluronate in synovial joints with osteoarthritis," European Journal of Physical and Rehabilitation Medicine, vol. 47, pp. 407-415, 2011.
[75]M. Benke and B. Shaffer, "Viscosupplementation treatment of arthritis pain," Current Pain and Headache Reports, vol. 13, pp. 440-446, 2009.
[76]M. J. Axe and C. L. Shields Jr, "Potential applications of hyaluronans in orthopaedics: Degenerative joint disease, surgical recovery, trauma and sports injuries," Sports Medicine, vol. 35, pp. 853-864, 2005.
[77]M. Jarvis, "Chemistry: Cellulose stacks up," Nature, vol. 426, pp. 611-612, 2003.
[78]D. D. a. W. V. Cooke AF, "The rheology of synovial fluid and synthetic lubricants for degenerate synovial joints.," Engineering in Medicine, vol. 7 pp. 66-72, 1978
[79]X. Yang and W. Zhu, "Viscosity properties of sodium carboxymethylcellulose solutions," Cellulose, vol. 14, pp. 409-417, 2007/10/01 2007.
[80]T. Heinze, et al., "Viscosity behaviour of multivalent metal ion-containing carboxymethyl cellulose solutions," Die Angewandte Makromolekulare Chemie, vol. 220, pp. 123-132, 1994.
[81]M. Edali, et al., "Rheological properties of high concentrations of carboxymethyl cellulose solutions," Journal of Applied Polymer Science, vol. 79, pp. 1787-1801, 2001.
[82]D. G. Moffett and Jr, "A new lubricant (carboxymethylcellulose) for contact lens examination," Archives of Ophthalmology, vol. 109, pp. 173-173, 1991.
[83]A. Vissink, et al., "Wetting Properties of Human Saliva and Saliva Substitutes," Journal of Dental Research, vol. 65, pp. 1121-1124, September 1, 1986 1986.
[84]X. Cai, et al., "Sustained release of 5-fluorouracil by incorporation into sodium carboxymethylcellulose sub-micron fibers," International Journal of Pharmaceutics, vol. 419, pp. 240-246, 2011.
[85]S. C. Scholes, "A frictional study of total hip joint replacements," Physics in Medicine and Biology, vol. 45, pp. 3721-3735, 2000.
[86]G. Skjak-Brak and K. I. Draget, "10.10 - Alginates: Properties and Applications," in Polymer Science: A Comprehensive Reference, M. Editors-in-Chief: Krzysztof and M. Martin, Eds., ed Amsterdam: Elsevier, 2012, pp. 213-220.
[87]Y. Zhao, et al., "Interactions between bovine serum albumin and alginate: An evaluation of alginate as protein carrier," Journal of Colloid and Interface Science, vol. 332, pp. 345-353, 2009.
[88]K. Y. Lee and S. H. Yuk, "Polymeric protein delivery systems," Progress in Polymer Science, vol. 32, pp. 669-697, 2007.
[89]F. van de Velde, et al., "1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry," Trends in Food Science & Technology, vol. 13, pp. 73-92, 2002.
[90]D. T. C. S. Anderson N.S., Lawson C.J., Penman A., Rees D.A. , "Carrageenans. Part V. The masked repeating structures of λ- and μ-carrageenans " Carbohydrate Research, vol. 7, pp. 468-473., 1968.
[91]J. R. Stokes, et al., "Lubrication, Adsorption, and Rheology of Aqueous Polysaccharide Solutions," Langmuir, vol. 27, pp. 3474-3484, 2011/04/05 2011.
[92]J. M. Brandt, et al., "Biochemical comparisons of osteoarthritic human synovial fluid with calf sera used in knee simulator wear testing," Journal of Biomedical Materials Research Part A, vol. 94A, pp. 961-971, 2010.
[93]D. Pasqui, et al., "Polysaccharide-Based Hydrogels: The Key Role of Water in Affecting Mechanical Properties," Polymers, vol. 4, pp. 1517-1534, 2012.
[94]R. Tadmor, et al., "Thin film rheology and lubricity of hyaluronic acid solutions at a normal physiological concentration," Journal of Biomedical Materials Research, vol. 61, pp. 514-523, 2002.
[95]R. Tadmor, et al., "Normal and Shear Forces between Mica and Model Membrane Surfaces with Adsorbed Hyaluronan," Macromolecules, vol. 36, pp. 9519-9526, 2003/12/01 2003.
[96]F. C. Linn, "Lubrication of animal joints: II The mechanism," Journal of Biomechanics, vol. 1, pp. 193-205, 1968.
[97]S. Geresh, et al., "Isolation and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp," Carbohydrate Research, vol. 344, pp. 343-349, 2009.
[98]D. Gourdon, et al., "Adhesion and Stable Low Friction Provided by a Subnanometer-Thick Monolayer of a Natural Polysaccharide†," Langmuir, vol. 24, pp. 1534-1540, 2008/02/01 2007.
[99]S. Arad, et al., "Superior Biolubricant from a Species of Red Microalga," Langmuir, vol. 22, pp. 7313-7317, 2006/08/01 2006.
[100]A. Katchalsky, "Polyelectrolytes and Their Biological Interactions," Biophysical Journal, vol. 4, pp. 9-41, 1964.
[101]G. Kagata and J. P. Gong, "Surface sliding friction of negatively charged polyelectrolyte gels," Colloids and Surfaces B: Biointerfaces, vol. 56, pp. 296-302, 2007.
[102]K. Nakashima, et al., "Effect of conformational changes and differences of proteins on frictional properties of poly(vinyl alcohol) hydrogel," Tribology International, vol. 40, pp. 1423-1427, 2007.
[103]G. S. Manning, "Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties," Journal of Chemical Physics vol. 51, pp. 924-934, 1969.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔