(3.238.174.50) 您好!臺灣時間:2021/04/17 04:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:薛如君
研究生(外文):Ju-Chun Hsueh
論文名稱:含雙咔唑取代基團之三苯胺及N-苯基咔唑衍生物的電聚合高分子薄膜之製備及其光電特性
論文名稱(外文):Preparation and Optoelectronic Properties of Electropolymerized Polymeric Films from Di(carbazol-9-yl)-substituted Triphenylamine and N-Phenylcarbazole Derivatives
指導教授:蕭勝輝
指導教授(外文):Sheng-Huei Hsiao
口試委員:陳燿騰陳志堅劉貴生
口試委員(外文):Yaw-Terng ChernJyh-Chien ChenGuey-Sheng Liou
口試日期:2013-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:40
中文關鍵詞:三苯胺電聚合光激發光電致變色
外文關鍵詞:carbazoletriphenylamineelectropolymerizationphotoluminescenceelectrochromism
相關次數:
  • 被引用被引用:1
  • 點閱點閱:124
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
兩種以三苯基胺或N-苯基咔唑作為核心結構並含兩個咔唑封端的單體 4,4’-Di(carbazol-9-yl)-4”-methoxytriphenylamine (TPA-2Cz) 及 3,6-Di(carbazol-9- yl)-N-(4-methoxyphenyl)carbazole (PhCz-2Cz) 係經由一個眾所皆知的化學從容易取得的試劑製備而成。我們探討這兩個單體衍生物的電化學和電聚合反應,並與咔唑基的活性位置具有tert-butyl取代基的類似單體進行了比較。將單體溶在具有電解質的溶液中,經過循環伏安(CV)重複的掃描數圈後,高分子薄膜會在ITO/玻璃表面逐漸生成。這些塗佈在ITO/玻璃表面的高分子薄膜表現出可逆的電化學氧化還原過程且伴隨著明顯的顏色變化。這些薄膜的電致變色行為可藉由光譜電化學清楚地解釋,多次開關測試研究則用來評估電聚合薄膜的電致變色穩定性。此外,我們也使用氯化鐵作為氧化劑的化學氧化聚合法將這兩種單體聚合成高分子,這些高分子的溶液和固態薄膜在受紫外光激發時會發射藍色螢光。

Two carbazole end-capped monomers containing triphenylamine or N-phenylcarbazole as an interior core, namely 4,4’-di(carbazol-9-yl)- 4”-methoxytriphenylamine (TPA-2Cz) and 3,6-di(carbazol-9-yl)-N-(4-methoxy- phenyl)carbazole (PhCz-2Cz), were prepared by a well-known chemistry from readily available reagents. The electrochemistry and electropolymerization of these two monomers were investigated and compared with those of structurally similar analogues with tert-butyl groups attaching on the active sites of the end-capped carbazole units. The polymeric films were built onto ITO/glass surface by repetitive cyclic voltammetry (CV) scanning of the monomer solutions containing an electrolyte. The electropolymerized films exhibited reversible electrochemical oxidation processes and strong color changes upon electro-oxidation, which can be switched by potential modulation. The remarkable electrochromic behavior of the film was clearly interpreted on the basis of spectroelectrochemical studies, and the electrochromic stability was evaluated by the electrochromic switching studies. In addition, the polymers of TPA-2Cz and PhCz-2Cz were also prepared by oxidative coupling polymerization using FeCl3 as an oxidant. Their solutions and solid films emitted blue fluorescence upon exposure to UV light.

CONTENTS
摘 要 i
ABSTRACT ii
ACKNOWLEDGEMENTS iv
CONTENTS v
LIST OF SCHEMES vii
LIST OF TABLES viii
LIST OF FIGURES ix


CHAPTER 1 INTRODUCTION 1
CHAPTER 2 EXPERIMENTAL 3
2.1 Materials and Instrumentation 3
2.1.1 Materials 3
2.1.2 Instrumentation 4
2.2 Monomer Synthesis 5
2.2.1 3,6-Di(carbazol-9-yl)-N-(4-methoxyphenyl)carbazole (3) 5
2.2.2 4,4’-Di(carbazol-9-yl)-4’’-methoxytriphenylamine (3’) 6
2.2.3 3,6-Di(3,6-di-tert-butylcarbazol-9-yl)-N-(4-methoxyphenyl)carbazole (4) 7
2.2.4 4,4’-Di(3,6-di-tert-butylcarbazol-9-yl)-4’’-methoxytriphenylamine (4’)... 8
2.3 Polymer Synthesis 9
2.3.1 Electrochemical Polymerization 9
2.3.2 Chemical Polymerization 9
CHAPTER 3 RESULTS AND DISCUSSION 10
3.1 Monomer Synthesis 10
3.2 Polymer Synthesis 18
3.2.1 Electrochemical Polymerization 18
3.2.2 Chemical Polymerization 19
3.3 Optical Properties 21
3.3.1 Monomers 21
3.3.2 Polymer 22
3.4 Electrochemical Properties 24
3.4.1 Monomers 24
3.4.2 Electrochemically Synthesized Polymer Films 24
3.5 Spectroelectrochemical and Electrochromic Properties 30
CHAPTER 4 CONCLUSIONS 36
REFERENCES 37

REFERENCES

1.(a) D. R. Rosseinsky, R. J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater. 2001, 13, 783-793; (b) P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007.
2.(a) A. Patra, M. Bendikov, Polyselenophenes. J. Mater. Chem. 2010, 20, 422-433; (b) P. M. Beaujuge, C. M. Amb, J. R. Reynolds, Spectral engineering inπ-conjugated polymers with intramolecular donor-acceptor interactions. Acc. Chem. Res. 2010, 43, 1396-1407; (c) P. M. Beaujuge, J. R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268-320; (d) C. M. Amb, A. L. Dyer, J. R. Reynolds, Navigating the color platte of solution-processable electrochromic polymers. Chem. Mater. 2011, 23, 397-415; (e) A. Balan, D. Baran, L. Toppare, Benzotriazole containing conjugated polymers for multipurpose organic electrochromic applications. Polym. Chem. 2011, 2, 1029-1043; (f) G. Gunbas, L. Toppare, Electrochromic conjugated polyheterocycles and derivatives—hilights from the last decade towards realization of long lived aspirations. Chem. Commun. 2012, 48, 1083-1101.
3.(a) M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng. 2002, 287, 442-461; (b) J. V. Grazulevicius, P. Strohriegl, J. Pelichowski, K. Pelichowski, Carbazole-containing polymers: synthesis, properties and applications. Prog. Polym. Sci. 2003, 28, 1297-1353; (c) Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107, 953-1010.
4.(a) J.-F. Morin, M. Leclerc, D. Ades, A. Siove, Polycarbazoles: 25 years of progress. Macromol. Rapid Commun. 2005, 26, 761-778; (b) N. Bloudin, M. Leclerc, Poly(2,7-carbazole)s: structure-property relationships. Acc. Chem. Res. 2008, 41, 1110-1119; (c) P.-L. T. Boudreault, S. Beaupre, M. Leclerc, Polycarbazoles for plastic electronics. Polym. Chem. 2010, 1, 127-136.
5.(a) J. F. Ambrose, R. F. Nelson, Anodic oxidation pathways of carbazoles I. Carbazole and N-substituted derivatives. J. Electrochem. Soc. 1968, 115, 1159-1164; (b) J. F. Ambrose, L. L. Carpenter, R. F. Nelson, Electrochemical and spectroscopic properties of cation radicals III. Reaction pathways of carbazolium radical ions. J. Electrochem. Soc. 1975, 122, 876-894.
6.(a) Y.-C. Chen, G.-S. Huang, C.-C. Hsiao, S.-A. Chen, High triplet energy polymer as host for electrophosphorescence with high efficiency, J. Am. Chem. Soc. 2006, 128, 8549-8558; (b) M.-H. Tsai, H.-W. Lin, H.-C. Su, T.-H. Ke, C.-C. Wu,F.-C. Fang, Y.-L. Liao, K.-T. Wong, C.-I Wu, Highly efficient organic blue electrophosphorescent devices based on 3,6-bis(triphenylsilyl)carbazole as the host material. Adv. Mater. 2006, 18, 1216-1220; (c) M.-H. Tsai, Y.-H. Hong, C.-H. Chang, H.-C. Su, C.-C. Wu, A. Matoliukstyte, J. Simokaitiene, S. Grigalevicius, J. V. Grazulevicius, C.-P. Hsu, 3-(9-Carbazolyl)carbazoles and 3,6-di(9-carbazolyl)carbazoles as effective host materials for efficient blue organic electrophosphorescence. Adv. Mater. 2007, 19, 862-866; (d) J.-Q. Ding, B.-H. Zhang, J.-H. Lu, Z.-Y. Xie, L.-X. Wang, X.-B. Jing, F.-S. Wang, Solution-processable carbazole-based conjugated dendritic hosts for power-efficient blue-electrophosphorescent devices. Adv. Mater. 2009, 21, 4983-4986; (e) F.-M. Hsu, C.-H. Chien, P.-I Shih, C.-F. Shu, Phosphine-oxide-containing bipolar host material for blue electrophosphorescent devices. Chem. Mater. 2009, 21, 1017-1022; (f) Y.-T. Tao, Q. Wang, C.-L. Yang, C. Zhong, K. Zhang, J.-G. Qin, D.-G. Ma, Tuning the optoelectronic properties of carbazole/oxadiazole hybrids through linkage modes: hosts for highly efficient green electrophosphorescence. Adv. Funct. Mater. 2010, 20, 304-311; (g) W. Jiang, L. Duan, J. Qiao, G.F. Dong, D.-Q. Zhang, L.-D. Wang, Y. Qiu, High-triplet-energy tri-carbazole derivatives as host materials for efficient solution-processed blue phosphorescent devices. J. Mater. Chem. 2011, 21, 4918-4926; (h) L.-X. Xiao, Z.-J. Chen, B. Qu, J.-X. Luo, S. Kong, Q.-H. Gong, J. Kido, Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv. Mater. 2011, 23, 926-952; (i) Y.-T. Tao, C.-L. Yang, J.-G. Qin, Organic host materials for phosphorescent organic light-emitting diodes. Chem. Soc. Rev. 2011, 40, 2943-2970.
7.(a) H.-M. Wang, S.-H. Hsiao, Multicolor electrochromic poly(amide-imide)s with N,N-diphenyl-N’,N’-di-tert-butylphenyl-1,4-phenylenediamine moieties. Polym. Chem. 2010, 1, 1013-1023; (b) Y.-C. Kung, S.-H. Hsiao, Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem. 2011, 21, 1746-1754 ; (c) H.-J. Yen, G.-S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem. 2012, 3, 255-264.
8.G.-S. Liou, H.-Y. Lin, Synthesis and electrochemical properties of novel aromatic poly(amine-amide)s with anodically highly stable yellow and blue electrochromic behaviors. Macromolecules 2009, 42, 125-134.
9.(a) C. Hohle, U. Hofmann, S. Schloter, M. Thelakkat, P. Strohriegl, D. Haarer, S. J. Zilkerb, Photorefractive triphenylamine-based glass: a multifunctional low molecular weight compound with fast holographic response. J. Mater. Chem. 1999, 9, 2205-2210; (b) M. He, R. J. Twieg, U. Gubler, D. Wright, W. E. Moerner, Synthesis and photorefractive properties of functional glasses. Chem. Mater. 2003, 15, 1156-1164.
10.G. Sonmez, I. Schwendeman, P. Schottland, K. Zong, J. R. Reynolds, N-Substituted poly(3,4-propylenedioxypyrrole)s: high gap and low redox potential switching electroactive and electrochromic polymers. Macromolecules 2003, 36, 639-647.
11.C. Lambert, G. Noll, The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc. 1999, 121, 8434-8442.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔