(3.227.235.183) 您好!臺灣時間:2021/04/20 09:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐尉芯
研究生(外文):Wei-Hsin Hsu
論文名稱:奈米級氫氧基磷灰石於牙齒表面再礦化之研究
論文名稱(外文):The Studies of Nano Hydroxyapatite for Teeth Remineralization.
指導教授:楊重光楊重光引用關係
口試委員:鄧乃嘉楊正昌
口試日期:2013-06-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:68
中文關鍵詞:奈米級氫氧基磷灰石聚麩胺酸再礦化實驗設計法
外文關鍵詞:Nano HydroxyapatiteGamma PGARemineralizationDesign of Experment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以奈米級氫氧基磷灰石(Nano HA)添加不同比例聚麩胺酸(γ-PGA)配製之再礦化溶液,於受酸蝕之牙釉質(Enamel)表面進行修復及再礦化之研究。並利用實驗設計法(DOE)搭配變異數分析(ANOVA)進行實驗規劃及探討其差異性,主要分析因子有Nano HA、γ-PGA及β-TCP的添加比例、混合方式和再礦化溶液於牙齒表面不同浸泡時間。並藉由DLS、HV、FTIR、AFM及FE-SEM等相關儀器驗證,主要觀察再礦化溶液是否於牙釉質表面進行沉積達到填補修復的作用,並分析再礦化溶液各種不同性質是否會影響礦化的程度。由結果得知,再礦化溶液中Nano HA平均粒徑大小與分佈約在300 nm以下。從AFM分析中量測牙齒初始狀態(Sound)表面粗糙度為9.01 ± 1.36nm,經酸蝕(Etched)後粗糙度增加至44.32 ± 4.90 nm,浸泡不同的時間後粗糙度由39.14 ± 2.11nm回復至29.41±0.36nm。FTIR觀察得知溶液浸泡時間的增加,磷酸根(PO43-)有明顯增強的趨勢。且在牙齒再礦化率的表現上,以實驗組別NO.10 (5%γ-PGA 0.5gNano HA)其中γ-PGA在5wt%情況下酸鹼pH=2.1,有助於Nano HA微溶解釋放出鈣離子及磷酸根離子,增加牙齒表面鈣離子及磷酸根離子之濃度。因此再礦化率可達到30.1±5.5%為最佳實驗效果。明顯高於市售牙膏GC Mousse的10.81±1.13%,再礦化率可達2倍之多。最後由類神經網路(Neural Network)預測最佳化的配比參數,確實可達到所有組數中最高的30.50%的再礦化率,更能確認實驗設計法規劃的準確性。



The purpose of this study is to investigate the remineralization effect of nano HA/γ-PGA solution onthe surface etched enamel.
Partical size of the remineralization solution was determined byDynamic Light Scattering (DLS).Microhardnessmeasurements were used to analyzethe remineralization ratio before and after the treatments of the teeth.The highest remineralization ratio is found to be 30.1±5.5% in the 10 minutes immersed time. To examine these enamel surfaces, the peak intensity of the PO43- increased with soaking time by Fourier transform infrared spectroscopy (FTIR).This proved that the remineralization solutions mayrepair the enamel surface of teeth erosion. The roughnesses of the sample were determined by Atomic Force Microscope (AFM). After the addition of the remineralization solutions, the roughnesses changed from 39.14 ± 2.11nm to 29.41±0.36nm. The 5g of Nano HA and 0.263g 5% γ-PGA in the remineralization solutions provided a better result of the remineralization repair for the enamel surface of teeth erosion.
In addition, design of experiment (DOE) andanalysis of variance(ANOVA)are applied to analyze the significance of the control factors.The ratio of Nano HA and γ-PGA, mixing method, and the different immersed time with the remineralization solutions in the surface of teeth would be analyzed.


摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章前言 1
1.1 研究動機 1
1.2研究目的 2
第二章文獻回顧 3
2.1牙齒構造 3
2.1.1牙釉質(Enamel) 3
2.1.2牙本質(Dentin) 4
2.1.3 牙髓腔(Pulp) 4
2.1.4牙骨質(Cementum) 4
2.2牙齒去礦化與再礦化之過程 4
2.3磷酸鈣鹽類之概論 6
2.3.1氫氧基磷灰石 7
2.3.2三鈣磷酸鹽 9
2.3.3 雙相磷酸鈣 10
2.3.4 非晶型磷酸鈣 11
2.4可促進牙齒再礦化之材料發展與應用 12
2.4.1氟化物 12
2.4.2 酪蛋白磷酸胜肽-非晶型磷酸鈣 12
2.4.3 γ-PGA(γ-polyglutamic acid)概述 12
2.4.4碳酸鈣 14
2.5實驗設計法 14
第三章材料與方法 16
3.1實驗材料 16
3.2 實驗儀器 16
3.3實驗規劃 18
3.4 實驗方法 20
3.4.1 再礦化溶液之製備 20
3.4.1.1 γ-PGA、Nano HA及β-TCP之各添加比例 20
3.4.1.2 分散方式 20
3.4.1.3 再礦化溶液於牙齒表面浸泡之時間參數 21
3.4.2牙齒分組 21
3.4.3牙齒再礦化之功效性評估 21
3.4.3.1 牙齒樣本之製作 21
3.4.3.2牙齒樣本去礦化與再礦化之處理 22
3.5材料分析 23
3.5.1粒徑分析儀(Zeta sizer) 23
3.5.2維克氏硬度試驗儀(HV) 23
3.5.3原子力顯微鏡(AFM) 25
3.5.4傅立葉轉換紅外光譜儀(FTIR) 26
3.6 統計分析 26
第四章結果與討論 28
4.1 實驗設計法之γ-PGA、Nano HA及β-TCP之各添加比例之判定 28
4.1.1 實驗設計法設計之10組實驗組別 28
4.1.2製備再礦化溶液分散方式之時間參數 33
4.2牙齒表面再礦化能力評估 36
4.3探討再礦化溶液於牙齒表面修復之效果 44
4.3.1觀察表面粗糙度變化 44
4.3.2觀察牙齒表面之官能基變化 52
4.3.3 觀察HA及β-TCP之表面形貌 54
4.3.4分析再礦化溶液之粒徑分佈 57
4.4實驗設計法(DOE) 60
第五章結論 64
文獻回顧 66


1.S. Dorozhkin, "Calcium Orthophosphates," Journal of Materials Science, vol. 42, 2007, pp. 1061-1095.
2.O. Fejerskov, "Changing Paradigms in Concepts on Dental Caries: Consequences for Oral Health Care," Caries Res, 2004, pp. 182–191.
3.A. Lussi and T. Jaeggi, "Erosion—Diagnosis and Risk Factors," Clin Oral Invest, 2008, pp. 5-13.
4.A. T., "Solubility Properties of Human Tooth Mineral and Pathogenesis of Dental Caries," Oral Diseases, 2004, pp. 249-257.
5.G. C. and S. GK., "Measurement of Enamel Remineralization Using Microradiography and Confocal Microscopy. ," Caries Res, 1988, pp. 385-92.
6.M. J. Larsen and E. I. F. Pearce, "Saturation of human saliva with respect to calcium salts," Archives of Oral Biology, vol. 48, 2003, pp. 317-322.
7.C. Prati, L. Montebugnoli, P. Suppa, G. Valdre, and R. Mongiorgi, "Permeability and morphology of dentin after erosion induced by acidic drinks.," J Periodontol., 2003, pp. 428-436.
8."行政院衛生署全民健康保險醫療統計年報 ".
9.P. Y. Chena, A. Y. M. Lina, Y. S. Linb, Y. Sekia, A. G. Stokesb, J. Peyrasa, E. A. Olevskyc, b. M.A. Meyersa, and J. McKittricka, "Structure and Mechanical Properties of Selected Biological Materials," Journal of The Mechanical Behavior of Biomedical Materials I, 2008, pp. 208-226.
10.A. Antunes, S. S. Vianna, A. S. L. Gomes, W. De Rossi, and D. M. Zezell, "Surface Morphology, Elemental Distribution, and Spectroscopic Changes Subsequent the Application of Nano-second Pulsed Nd:YAG Laser on Dental Enamel Surface," Laser Physics Letters, vol. 2, 2005, pp. 141-147.
11.B. A, "In: Dental Enamel, Ciba Foundation Symposium.," J Dent Res, 1997, pp. 18-31.
12.T. C. AR, "Oral Histology: Development, Structure, and Function," Caries Res, 1998, p. 497.
13.S. S. Alauddin, "In Vitor Remineralization of Human Enamel With Bioactive Glass Containing Dentifrice Using Confocal Microscopy and Nanoindentation analysis of Early Caries Defense," Thesis (M.S.), 2004.
14.S. J. Kalita, A. Bhardwaj, and H. A. Bhatt, "Nanocrystalline Calcium Phosphate Ceramics in Biomedical Engineering," Materials Science and Engineering: C, 2007.
15.R. W. Nurse, J. H. Welch, and G. W., "High-temperature phase equilibria in the system dicalcium silicate - Tricalcium phosphate.," Journal of the Chemical Society (Resumed). 1959, pp. 1077-83.
16.S. V. Dorozhkin, "Amorphous Calcium Orthophosphates: Nature, Chemistry and Biomedical Applications," International Journal of Materials and Chemistry, 2012, pp. 19-46.
17.Z. Z. Zyman, D. V.Rokhmistrov, and G. V. I., "Structural and Compositional Features of Amorphous Calcium Phosphate at The Early Stage of Precipitation.," J Mater Sci Mater Med., 2010, pp. 123-30.
18.H. F. Morris, S. Ochi, J. R. Spray, and O. J. W., " Periodontal-type measurements associated with hydroxyapatite-coated and non-HA-coated implants: uncovering to 36 months. ," Ann Periodontol., vol. 5, 2000, pp. 56-57.
19.G. M. Whitford, "The Physiological and Toxicological Characteristics of Fluoride.," J Dent Res, 1990, pp. 539-49.
20.K. J. Cross, N. L. Huq, J. E. Palamara, J. W. Perich, and R. E. C., "Physicochemical Characterization of Casein Phosphopeptide-Amorphous Calcium Phosphate Nanocomplexes.," Biomaterials, 2005, pp. 15362-9.
21.A. Richard and M. A., "Poly(glutamic acid) for Biomedical Applications," Crit Rev Biotechnol., 2001, pp. 219-32.
22.Y. Sung Ho, D. Jin Hwan, L. Sang Yup, and C. Ho Nam, "Production of Poly-γ -Glutamic Acid by Fed-Batch Culture of Bacillus Licheniformis," Biotechnology Letters, 2000, pp. 585-588.
23.J. A. Cury, S. B. Francisco, G. S. Simoes, A. A. Del Bel Cury, and T. C. P., "Effect of a Calcium Carbonate-Based Dentifrice on Enamel Demineralization in Situ.," Caries Res, 2003.
24.葉怡成, "應用類神經網路",台北,2001.
25.K. Collys, R. Cleymaet, D. Coomans, Y. Michotte, and D. Slop, " Rehardening of Surface Softened and Surface Etched Enamel in Vitro and by Intraoral Exposure.," Caries Res., 1993, pp. 15-20.
26."Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics. Designation:ASTM C1327-08."
27.Robert L., A. C. Karlinseya, D. D. Mackeya, Blanken, and C. S. Schwandtb, "Remineralization of Eroded Enamel Lesions by Simulated Saliva In Vitro," The Open Dentistry Journal, 2012, pp. 170-176.
28.K. D. Jandt, "Atomic Force Microscopy of Biomaterials Surfaces and Interfaces," Surface Science, vol. 491, 2001, pp. 303-332.
29.F. Lippert, D. M. Parker, and K. D. Jandt, "In Vitro Demineralization/Remineralization Cycles at Human Tooth Enamel Surfaces Investigated by AFM and Nanoindentation," Journal of Colloid and Interface Science, vol. 280, 2004, pp. 442-448.
30.N. Srinivasan *, M. Kavitha, and S. C. Loganathan, "Comparison of the Remineralization Potential of CPP-ACP and CPP-ACP with 900 ppm Fluoride on Eroded Human Enamel: An in Situ Study," Archives of Oral Biology, vol. 55, 2010, pp. 541-544.
31.P. Tschoppe, D. L. Zandim, P. Martus, and A. M. Kielbassa, "Enamel and dentine remineralization by nano-hydroxyapatite toothpastes," Journal of Dentistry, vol. 39, 2011, pp. 430-437.
32.G. E. Tiznado-Orozco, R. Garc’ıa-Garc’ıa, and J. Reyes-Gasga, "Structural and Thermal Behaviour of Carious and Sound Powders of Human Tooth Enamel and Dentine," 2009, pp. 1-13.
33.H.-Y. Chung and C. C. Li, "Microstructure and nanomechanical properties of enamel remineralized with asparagine–serine–serine peptide," Materials Science and Engineering: C, vol. 33, 2013, pp. 969-973.
34.I. T., "Prevention of Progression of Dental Erosion by Professional and Individual Prophylactic Measures.," 1996, pp. 215-30.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔