(3.227.235.183) 您好!臺灣時間:2021/04/17 11:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宜苹
研究生(外文):Yi-Ping Chen
論文名稱:環氧樹脂鋰電解質薄膜之製備及分析
論文名稱(外文):Preparation and Analysis of the Epoxy Lithium Electrolyte Membranes
指導教授:鄭國忠鄭國忠引用關係
口試委員:林達鎔王大銘郭文正
口試日期:2013-06-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:116
中文關鍵詞:化學誘發相分離環氧樹脂薄膜表面型態鋰離子導電度鋰電解質隔離膜機械性質
外文關鍵詞:chemically induced phase separationepoxy membranesurface morphologyionic conductivitylithium electrolytes separator membranemechanical property
相關次數:
  • 被引用被引用:3
  • 點閱點閱:626
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用化學誘發相分離法製備具有孔洞互穿結構的環氧樹脂薄膜,實驗中以雙酚A型的環氧樹脂(D.E.R.331)溶入二異丁酮(diisobutyl ketone, DIBK)中,利用2,4,6-三(二甲胺基甲基)苯酚(2,4,6-tris-(dimethylaminomethyl)phenol, DMP-30)作為硬化劑,於硬化反應的過程中,誘發高分子與溶劑溶解度下降而引發相分離,再將溶劑去除以製備出多孔性高分子薄膜,即為化學誘發相分離法(CIPS)。由機械性質分析中得知,多孔性環氧樹脂鋰電解質隔離膜之壓縮彈性模數為0.1至0.7GPa。再將形成網狀結構的環氧樹脂高分子薄膜進行膨潤度測試,將其浸泡不同濃度之過氯酸鋰電解液,膨潤度約介在2至59 %之間,取決於環氧樹脂薄膜的交聯型態。以1M過氯酸鋰之Ethylene carbonate (EC)/ Propylene carbonate (PC)/ Diethyl carbonate (DEC)製備出環氧樹脂鋰電解質薄膜之鋰離子導電度可達1.5 x10-2 S/cm (20℃),且可達5.3x10-2 S/cm (70℃)。

Porous epoxy networks were prepared from epoxy resin, D.E.R. 331, cured with tertiary amine: 2,4,6-tris-(dimethylaminomethyl) phenol (DMP-30), in the diisobutyl ketone (DIBK). After removing the solvent, epoxy thermosets with interconnected channels can be formed via chemical induced phase separation, CIPS. It was found that the compression modulus of the epoxy membranes was about 0.7~2.0 GPa. The epoxy networks were further impregnated with different lithium ionic electrolyte liquids. The swelling ratio of epoxy resin membranes was from 2% to 59%, which was majorly dependent on the morphology of the epoxy networks. The lithium ionic conductivity of the epoxy electrolyte membranes prepared in the mixture of lithium perchlorate with ethylene carbonate (EC), propylene carbonate (PC) and diethyl carbonate (DEC) could reach 1.5 x10-2 S/cm at 20℃, and 5.3x10-2 S/cm at 70℃.

目 錄

摘要 i
ABSTRACT ii
誌謝 iii
目錄 v
表目錄 viii
圖目錄 xi
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
第二章 相關理論與文獻回顧 4
2.1 環氧樹脂之簡介 4
2.2 薄膜之簡介 6
2.3 高分子薄膜結構之分類 7
2.4 高分子薄膜之製備 9
2.5 高分子溶液熱力學平衡 11
2.6 Flory-Huggins theory 12
2.7 相分離過程的形式和命名 13
2.7.1 化學誘發相分離(CIPS) 13
2.7.1.1 化學誘發相分離應用於製備多孔性薄膜 15
2.8 高分子離子活化能 16
2.9 含氟高分子 17
2.10 化學誘發相分離法之相關文獻 18
2.11 三級胺催化環氧樹脂之相關文獻 24
2.12 薄膜添加電解液(鹽類是LiClO4)之相關文獻 26
第三章 實驗方法 30
3.1 實驗藥品 30
3.2 實驗儀器 34
3.3 實驗流程及步驟 37
3.3.1 實驗流程 37
3.3.2 高分子薄膜之合成 38
3.4 高分子電解液膨潤(率)作用 41
3.5 傅立葉式紅外線吸收光譜儀(FT-IR) 42
3.6 掃瞄式電子顯微鏡(SEM) 43
3.7 熱重分析儀(TGA) 46
3.8 微分掃描熱卡計(DSC) 46
3.9 離子導電度之量測 46
3.10 壓力彈性鬆弛測定儀 48
第四章 結果與討論 49
4.1 聚合反應程度之評估 49
4.2 薄膜型態之探討 50
4.2.1 薄膜內部之型態 50
4.2.2 薄膜表面之型態 51
4.3 薄膜之膨潤程度分析 53
4.4 濕薄膜之熱性質分析 58
4.5 濕薄膜之導電性質分析 61
4.6 計算離子活化能 65
4.7 濕薄膜之機械性質分析 67
4.8 濕薄膜之M及F系列比較 68
4.9 高氧化穩定性鋰鹽之探討 68
4.10 電解液配方對鋰離子之影響 69
第五章 結論 96
未來工作 97
符號說明 98
參考文獻 99
附錄 108
附錄A M-24~M-40(FM-28~FM-40)之成膜形貌 108
附錄B 環氧樹脂薄膜M與F系列之SEM圖 109
附錄C 環氧樹脂M及F系列薄膜表面及截面孔徑尺寸分佈 113
附錄D 環氧樹脂M及F系列薄膜浸泡1.0M LiClO4/EC/PC(1:1)及1.0M LiClO4/EC/PC/DEC(1:2:2)在不同溫度變化之離子導電度比較圖 115





[1]Sirkar, K.K. & Ho, W.S.W. 1992, Membrane handbook, Van Nostrand Reinhold New York.
[2]Sotiropoulou, S., Vamvakaki, V. & Chaniotakis, N.A. 2005, "Stabilization of enzymes in nanoporous materials for biosensor applications", Biosensors and Bioelectronics, vol. 20, no. 8, pp. 1674-1679.
[3]Xu, Y., Zhu, B. & Xu, Y. 2006, "Pilot test of vacuum membrane distillation for seawater desalination on a ship", Desalination, vol. 189, no. 1-3, pp. 165-169.
[4]Le-Clech, P., Chen, V. & Fane, T.A.G. 2006, "Fouling in membrane bioreactors used in wastewater treatment", Journal of Membrane Science, vol. 284, no. 1-2, pp. 17-53.
[5]Wang, Z., Wu, Z., Yin, X. & Tian, L. 2008, "Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization", Journal of Membrane Science, vol. 325, no. 1, pp. 238-244.
[6]Kiefer, J., Hedrick, J. & Hilborn, J. "Macroporous Thermosets by Chemically Induced Phase Separation", Advances in Polymer Science, vol. 147, pp. 161-247.
[7]賴耿陽編著 環氧樹脂應用實務 復漢出版社,1999.
[8]Desai, T.A. 2000, "Micro-and nanoscale structures for tissue engineering constructs", Medical Engineering and Physics, vol. 22, no. 9, pp. 595-606.
[9]Flemming, R., Murphy, C., Abrams, G., Goodman, S. & Nealey, P. 1999, "Effects of synthetic micro-and nano-structured surfaces on cell behavior", Biomaterials, vol. 20, no. 6, pp. 573-588.
[10]Sarkar, S., Dadhania, M., Rourke, P., Desai, T.A. & Wong, J.Y. 2005, "Vascular tissue engineering: microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix", Acta Biomaterialia, vol. 1, no. 1, pp. 93-100.
[11]Mulder, M. 1996, Basic Principles of Membrane Technology, 2nd ed., Boston: Kluwer Academic Publishers.
[12]Baker, R.W., Cussler, E.L., Eykamp, Koros, W. J., Riley, R. L., and Strathmann, H. 1991, Membrane Separation Systems, New Jersey: Noyes Data Corporation, Park Ridge.
[13]Young, T.H., Lai, J.Y., You, W.M. & Cheng, L.P. 1997, "Equilibrium phase behavior of the membrane forming water-DMSO-EVAL copolymer system", Journal of Membrane Science, vol. 128, no. 1, pp. 55-65.
[14]Hoenich, N., Levett, D., Fawcett, S., Woffindin, C. & Kerr, D. 1986, "Biocompatibility of haemodialysis membranes", Journal of Biomedical Engineering, vol. 8, no. 1, pp. 3-8.
[15]Broens, L., Bargeman, D. & Smolders, C. 1978, "On the mechanism of formation of PPO ultrafiltration membranes", Proc. 6th Int. Symp. Fresh Water from the Sea.
[16]Sperling, L. H. 1991, “Introduction to Physical Polymer Science,” 2nd ed, Wiley Interscience, New York.
[17]Smolders, C., Reuvers, A., Boom, R. & Wienk, I. 1992, "Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids", Journal of Membrane Science, vol. 73, no. 2-3, pp. 259-275.
[18]Della Martina, A., Hilborn, J. & Muhlebach, A. 2000, Macromolecules, vol. 33, no. 8, pp. 2916-2921.
[19]Loera, A.G., Cara, F., Dumon, M. & Pascault, J.P. 2002, "Porous epoxy thermosets obtained by a polymerization-induced phase separation process of a degradable thermoplastic polymer", Macromolecules, vol. 35, no. 16, pp. 6291-6297.
[20]Soule, E., de la Mata, M.G., Borrajo, J., Oyanguren, P. & Galante, M. 2003, "Reaction-induced phase separation in an epoxy/low molecular weight solvent system", Journal of Materials Science, vol. 38, no. 13, pp. 2809-2814.
[21]Kiefer, J., Hedrick, J. & Hilborn, J. "Macroporous Thermosets by Chemically Induced Phase Separation", Advances in Polymer Science, vol. 147, pp. 161-247.
[22]Flory, P.J. 1942, "Thermodynamics of high polymer solutions", The Journal of chemical physics, vol. 10, pp. 51-61.
[23]Riccardi, C.C., Borrajo, J. & Williams, R.J.J. 1994, "Thermodynamic analysis of phase separation in rubber-modified thermosetting polymers: influence of the reactive polymer polydispersity", Polymer, vol. 35, no. 25, pp. 5541-5550.
[24]Williams, R., Rozenberg, B. & Pascault, J.P. 1997, "Reaction-induced phase separation in modified thermosetting polymers", Polymer Analysis Polymer Physics, pp. 95-156.
[25]Vazquez, A., Rojas, A., Adabbo, H., Borrajo, J. & Williams, R. 1987, "Rubber-modified thermosets: prediction of the particle size distribution of dispersed domains", Polymer, vol. 28, no. 7, pp. 1156-1164.
[26]Verchere, D., Pascault, J., Sautereau, H., Moschiar, S., Riccardi, C. & Williams, R. 1991, Journal of Applied Polymer Science, vol. 42, no. 3, pp. 701-716.
[27]AlSaigh, Z. Y., 1997, Trends Polym Sci, vol. 5, pp. 97.
[28]Londono, J. & Wignall, G. 1997, "The Flory− Huggins Interaction Parameter in Blends of Polystyrene and Poly (p-Methylstyrene) by Small-Angle Neutron Scattering", Macromolecules, vol. 30, no. 13, pp. 3821-3824.
[29]M. Cheryan, 1998, Ultrafiltration and Microfiltration Handbook, Technomic Publishing Company, Inc., Lancaster, PA, U.S.A.
[30]Kiefer, J., Hilborn, J. & Hedrick, J. 1996, "Chemically induced phase separation: a new technique for the synthesis of macroporous epoxy networks", Polymer, vol. 37, no. 25, pp. 5715-5725.
[31]Hosoya, K. & Fréchet, J.M.J. 2003, "Influence of the seed polymer on the chromatographic properties of size monodisperse polymeric separation media prepared by a multi-step swelling and polymerization method", Journal of Polymer Science Part A: Polymer Chemistry, vol. 31, no. 8, pp. 2129-2141.
[32]陳錦鈴,環氧樹脂及聚胺酯交聯環氧樹脂之研究,國立臺灣大學材料科學工程研究所,1992.
[33]Mezzenga, R., Boogh, L. & Månson, J.A.E. 2000, "Evaluation of solubility parameters during polymerisation of amine-cured epoxy resins", Journal of Polymer Science Part B: Polymer Physics, vol. 38, no. 14, pp. 1883-1892.
[34]Loera, A.G., Dumon, M. & Pascault, J.P. 2000, "Porous epoxy thermosetting polymers obtained by a phase separation process in the presence of emulsifiers", Macromolecular Symposia, vol. 151, pp. 341-346.
[35]Loera, A.G., Cara, F., Dumon, M. & Pascault, J.P. 2002, "Porous epoxy thermosets obtained by a polymerization-induced phase separation process of a degradable thermoplastic polymer", Macromolecules, vol. 35, no. 16, pp. 6291-6297.
[36]Soule, E., de la Mata, M.G., Borrajo, J., Oyanguren, P. & Galante, M. 2003, "Reaction-induced phase separation in an epoxy/low molecular weight solvent system", Journal of Materials Science, vol. 38, no. 13, pp. 2809-2814.
[37]Zucchi, I.A., Galante, M.J., Borrajo, J. & Williams, R.J.J. 2004, "A model system for the thermodynamic analysis of reaction-induced phase separation: solutions of polystyrene in bifunctional epoxy/amine monomers", Macromolecular Chemistry and Physics, vol. 205, no. 5, pp. 676-683.
[38]Giannotti, M., Mondragon, I., Galante, M. & Oyanguren, P. 2005, "Morphology profiles obtained by reaction-induced phase separation in epoxypolysulfonepolyether imide systems", Polymer International, vol. 54, no. 6, pp. 897-903.
[39]Salmon, N., Carlier, V., Schut, J., Remiro, P.M. & Mondragon, I. 2005, "Curing behaviour of syndiotactic polystyrene-epoxy blends: 1. Kinetics of curing and phase separation process", Polymer International, vol. 54, no. 4, pp. 667-672.
[40]Raman, V.I. & Palmese, G.R. 2005, "Nanoporous thermosetting polymers", Langmuir, vol. 21, no. 4, pp. 1539-1546.
[41]Tsujioka, N., Ishizuka, N., Tanaka, N., Kubo, T. & Hosoya, K. 2008, "Well-controlled 3D skeletal epoxy-based monoliths obtained by polymerization induced phase separation", Journal of Polymer Science Part A: Polymer Chemistry, vol. 46, no. 10, pp. 3272-3281.
[42]Ai, H., Xu, K., Chen, W., Liu, H. & Chen, M. 2009, "Effect of non-reactive solvent on the formation and properties of porous epoxy thermosets formed via reaction-induced phase separation", Polymer International, vol. 58, no. 1, pp. 105-111.
[43]Li, J., Du, Z., Li, H. & Zhang, C. 2009, "Porous epoxy monolith prepared via chemically induced phase separation", Polymer, vol. 50, no. 6, pp. 1526-1532.
[44]Han, J., Hsieh, K. & Chiu, W. 2003, "Kinetics of curing reaction of epoxide catalyzed by tertiary amine", Journal of Applied Polymer Science, vol. 50, no. 6, pp. 1099-1106.
[45]Lindsay, D. & Von Holy, A. 1997, "Evaluation of dislodging methods for laboratory-grown bacterial biofilms* 1", Food Microbiology, vol. 14, no. 4, pp. 383-390.
[46]Kuzub, L.I., Komarov, B.A. & Irzhak, V.I. 2000, "Kinetics and mechanism of the late stage of cure reaction-induced microphase separation", International Journal of Polymeric Materials, vol. 48, no. 2, pp. 225-235.
[47]Dell''Erba, I. & Williams, R. 2006, "Homopolymerization of epoxy monomers initiated by 4-(dimethylamino) pyridine", Polymer Engineering and Science, vol. 46, no. 3, pp. 351-359.
[48] Rajendran S, Sivakumar P. An investigation of PVdF/PVC-based blend electrolytes with EC/PC as plasticizers in lithium battery applications. Physica B: Condensed Matter 2008;403:509-16.
[49] Xi J, Qiu X, Li J, Tang X, Zhu W, Chen L. PVDF–PEO blends based microporous polymer electrolyte: Effect of PEO on pore configurations and ionic conductivity. Journal of Power Sources 2006;157:501-6.
[50] Shen Y. Porous PVDF with LiClO4 complex as ?solid? and ?wet? polymer electrolyte. Solid State Ionics 2004;175:747-50.
[51] Wang Y-J, Kim D. Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes. Electrochimica Acta 2007;52:3181-9.
[52] Xiao Q, Wang X, Li W, Li Z, Zhang T, Zhang H. Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. Journal of Membrane Science 2009;334:117-22.
[53] Chiang C-Y, Shen YJ, Reddy MJ, Chu PP. Complexation of poly(vinylidene fluoride):LiPF6 solid polymer electrolyte with enhanced ion conduction in ‘wet’ form. Journal of Power Sources 2003;123:222-9.
[54] Vijayakumar G, Karthick SN, Sathiya Priya AR, Ramalingam S, Subramania A. Effect of nanoscale CeO2 on PVDF-HFP-based nanocomposite porous polymer electrolytes for Li-ion batteries. Journal of Solid State Electrochemistry 2007;12:1135-41.
[55] Subramania A, Kalyana Sundaram NT, Vijaya Kumar G, Vasudevan T. New polymer electrolyte based on (PVA–PAN) blend for Li-ion battery applications. Ionics 2006;12:175-8.
[56] Subramania A, Kalyana Sundaram NT, Sathiya Priya AR, Vijaya Kumar G. Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. Journal of Membrane Science 2007;294:8-15.
[57] Deka M, Kumar A. Enhanced electrical and electrochemical properties of PMMA–clay nanocomposite gel polymer electrolytes. Electrochimica Acta 2010;55:1836-42.
[58] Kim Y-J, Ahn CH, Lee MB, Choi M-S. Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte. Materials Chemistry and Physics 2011;127:137-42.
[59] Deka M, Kumar A, Deka H, Karak N. Ionic transport studies in hyperbranched polyurethane/clay nanocomposite gel polymer electrolytes. Ionics 2012;18:181-7.
[60]鄭國忠、李順富、江文邦,“具有多孔性表面之薄膜之製造方法”,中華民國專利申請案號:092116429 , 2003.
[61] A. M. Rocco, C. P. Fonseca, F. A. M. Loureiro and R. P. Pereira, "A polymeric solid electrolyte based on a poly(ethylene oxide)/poly(bisphenol A-co-epichlorohydrin) blend with LiClO4," Solid State Ionics, vol. 166, pp. 115-126, 1/15, 2004.
[62] A. M. Rocco, C. P. da Fonseca and R. P. Pereira, "A polymeric solid electrolyte based on a binary blend of poly(ethylene oxide), poly(methyl vinyl ether-maleic acid) and LiClO4," Polymer, vol. 43, pp. 3601-3609, 6, 2002.
[63]Donovan, D., Brown, N., Bishop, E. & Lewis, C. 2001, "Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo", Angiogenesis, vol. 4, no. 2, pp. 113-121.
[64] J. F. Le Nest, H. Cheradame and A. Gandini, "A mechanism of ionic conduction in cross-linked polyethers," Solid State Ionics, vol. 28-30, pp. 1032-1037, 9, 1988.
[65] Gupta N, Ricci W. Processing and compressive properties of aerogel/epoxy composites. Journal of Materials Processing Technology 2008;198:178-82.
[66]Y. X. Zhang, A. H. Da, G. B. Butler, and T. E. Hogen-Esch, ''A fluorine-containing hydrophobically associating polymer. I. Synthesis and solution properties of copolymers of acrylamide and fluorine-containing acrylates or methacrylates,'' Journal of Polymer Science Part A: Polymer Chemistry, vol. 30, no. 7, 1992, pp. 1383-1391.
[67]S. A. Perusich, P. Avakian, and M. Y. Keating, ''Dielectric relaxation studies of perfluorocarboxylate polymers,'' Macromolecules, vol. 26, no. 18, 1993, pp. 4756-4764.
[68]D. M. Stoakley, A. K. St. Clair, and C. I. Croall, ''Low dielectric, fluorinated polyimide copolymers,'' Journal of Applied Polymer Science, vol. 51, no. 8, 1994, pp. 1479-1483.
[69]J. G. Hilborn, J. W. Labadie, and J. L. Hedrick, ''Poly(aryl ether-benzoxazoles),'' Macromolecules, vol. 23, no. 11, 1990, pp. 2854-2861.
[70]C.-C. Han, S.-P. Hong, K.-F. Yang, M.-Y. Bai, C.-H. Lu, and C.-S. Huang, ''Highly Conductive New Aniline Copolymers Containing Butylthio Substituent,'' Macromolecules, vol. 34, no. 3, 2000, pp. 587-591.
[71]陳啟漳, 含聚全氟醚聚胺基甲酸酯高分子電解質之製備與其特性探討, 碩士論文, 國立成功大學化學工程研究所, 台南, 2001。
[72]Stainer, M.; Hardy, L. C.; Whitmore, D. H.; Shriver, D. F. Journal of The Electrochemical Society 1984, 131, 784-790.
[73]陳盈助, 電解液配方對鋰離子電池性能之研究, 碩士論文, 國立成功大學化學工程研究所, 台南, 2002。
[74] Fong, R.; von Sacken, U.; Dahn, J. R. J. Electrochem. Soc. 137, 2009 (1990)
[75] Peled, E. J. Electrochem. Soc. 126, 2047,,1997
[76]Peled, E. Handbook of Battery Materials; Besendhard, J. O., Ed.; Wiley-VCH: Weinheim, 1999; p419
[77] Dudley, J. T.; Wllkinson, D. P.; Thomas, G, .; LeVae, R.; Woo, S.; Blom, H.; Horvath, C.; Juzkow, M. W.; Denis, B.; Juric, P.; Aghakian, P.; Dahn, J. R. J. Power Source 35, 59, 1991
[78] Nakamura, H.; Komatsu, H.; Yoshio, M. J. Power Source 62, 219, 1996
[79] Wrodnigg, G. H.; Besenhard, J. O.; Winter, M. J. Electrochem. Soc. 146,
470, 1999
[80]Fujimoto, H.; Fujimoto, M.; Ikeda, H.; Ohshita, R.; Fujitani, S.; Yonezu, I. J. Power Source 93, 224, 2001
[81]沈育仁,複合高分子電解質結構與電性之研究,碩士論文, 國立成功大學化學工程研究所, 台南, 2003。
[82]呂明怡,新型高分子電解質之合成與性質探討,碩士論文, 國立中央大學化學研究所, 桃園, 2004。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔