(18.206.177.17) 您好!臺灣時間:2021/04/11 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳正昕
研究生(外文):Cheng-Hsin Chen
論文名稱:氧化鋯/甲基丙烯酸羥乙酯厚膜之藍光及紫外線光聚合反應動力學模式
論文名稱(外文):Kinetic Model of UV/Blue Light Photopolymerization of ZrO2/HEMA Thick Films
指導教授:莊祖煌莊祖煌引用關係鄭國忠鄭國忠引用關係
口試委員:曾勝茂湯華興
口試日期:2013-06-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:128
中文關鍵詞:光聚合反應甲基丙烯酸羥乙酯Kamal方程式氧化鋯
外文關鍵詞:photopolymerizationhydroxyethyl methacrylatezirconium dioxideKamal equation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:115
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用photo-DSC研究氧化鋯(ZrO2)/ hydroxyethyl methacrylate(HEMA)厚膜在UV(365nm)光照射下的光聚合反應,發現反應速率會受到ZrO2含量影響。我們採用Kamal 方程式作為動力學模式並可求得轉化率隨反應時間的變化曲線,研究發現Kamal方程式在玻璃化現象發生前能良好描述實驗結果。依據組成的不同,厚膜的玻璃轉移溫度由88℃上升至95℃,而藉由TGA所量測的5%重量損失溫度由300℃提升到333℃。我們進一步使用photo-DSC搭配藍光LED (450nm),研究光起始劑Irgacure 819濃度對HEMA單體光聚合影響,並採用Kamal 方程式作為反應動力學模式。結果顯示Irgacure 819濃度越高會導致反應速率加快及厚膜玻璃轉移溫度降低,由85.4℃降至77.4℃。

Kinetics of photopolymerization of ZrO2/hydroxyethyl methacrylate (HEMA) thick films were investigated by photo-differential scanning calorimetry (DSC) under UV irradiation (365 nm). It was found that the reaction rate was affected by the ZrO2 fillers. Kamal equation was proposed to descrip the conversion profile dependent on the UV irradiation time. It showed an excellent agreement with the experimental results before vitrification. The glass transition temperature of the thick films were from about 88 to 95oC, and the temperature at 5% weight loss determined by a TGA were from 300 to 333oC, which were dependent on the composition.The photo- DSC was further coupled with a blue light LED (450nm) to study the photopolymeriz ation of the HEMA monomers under different amounts of photoinitiator: Irgacure 819. The Kamal equation was adopted for the kinetic model of the photopolymerization under blue light irradiation.

摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 xi
第一章 緒論 1
1.1前言1
1.2 研究動機4
第二章 文獻回顧 5
2.1光聚合樹脂主要成分5
2.1.1活性寡聚物(Reactive oligomer) 5
2.1.2活性單體(Reactive monomer) 7
2.1.3光起始劑(photoinitiator) 8
2.1.3.1光起始劑原理8
2.1.3.2光起始劑種類9
2.1.3.3 光起始劑AIBN簡介13
2.1.3.4光起始劑Ciba®Irgacure 819簡介13
2.1.4填充劑14
2.2氧氣的抑制作用14
2.3快速成型技術簡介15
2.4光聚合動力學之相關文獻16
2.5光聚合動力學模式之相關文獻26
2.6光聚合動力學簡介33
2.6.1動力學模式33
2.6.2光起始自由基聚合反應機構模式36
2.6.3凝膠效應38
2.6.4 自由基聚合反應41
2.6.4.1 線性系統41
2.6.4.2 交聯系統43
第三章 實驗方法 46
3.1實驗藥品46
3.2實驗儀器48
3.3實驗流程50
3.4樣品製備51
3.5測試方法51
第四章 結果與討論 55
4.1 傅立葉轉換紅外光譜儀分析55
4.2 光聚合動力學分析56
4.2.1 氧化鋯含量及光起始劑濃度對光聚合反應之影響58
4.2.2 光聚合動力學模式分析60
4.3 後硬化厚膜熱性質分析61
4.4 硬化厚膜SEM形態分析62
4.5 熱穩定性質分析63
第五章 結論 92
符號表 93
參考文獻 94
附錄A 102
附錄B 106

[1] 林子孟, "紫外光硬化型樹脂之光硬化動力學及熱物性分析," 碩士, 化學工程研究所, 國立臺北科技大學, 台北市, 2003.
[2] 洪嘯吟, 光照下的繽紛世界-光敏高分子化學的應用. 台北市: 曉園出版社, 2001.
[3] T. Chartier and C. Chaput, "Stereolithography as a shaping technique for ceramics," Bull. Eur. Ceram. Soc., vol. 1, pp. 29–32, 2003.
[4] Jae-Won Choi, R. Wicker, Seok-Hee Lee, Kyung-Hyun Choi, Chang-Sik Ha, and Ildoo Chung, "Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography," Journal of Materials Processing Technology, vol. 209, pp. 5494-5503, 2009.
[5] E. DeNava, M. Navarrete, A. Lopes, M. Alawneh, M. Contreras, D. Muse, S. Castillo, E. MacDonald, and R. Wicker, "Three-dimensional off-axis component placement and routing for electronics integration using solid freeform fabrication," Proceedings of Solid Freeform Fabrication Symposium, pp. 362-369, 2008.
[6] T. Lindhal, "Instability and decay of the primary structure of DNA," Nature, vol. 362, pp. 709–715, 1993.
[7] K. D. Jandt and R. W. Mills, "A brief history of LED photopolymerization," Dental Materials, 2013.
[8] 劉建良, "UV Curing發展簡介及應用," 化工科技與商情, vol. 41, pp. 1-4, 2003.
[9] S. Oprea, S. Vlad, and A. Stanciu, "Optimization of the synthesis of polyurethane acrylates with polyester compounds," European Polymer Journal, vol. 36, pp. 2409-2416, 2000.
[10] T. C. Çanak and İ. E. Serhatlı, "Synthesis of fluorinated urethane acrylate based UV-curable coatings," Progress in Organic Coatings, vol. 76, pp. 388-399, 2013.
[11] R. Holman and P. Oldring, "UV and EB Curing Formulations for Printing Inks, Coatings and Paints," Selective Industrial Training Associates Limited, p. 14, 1988.
[12] C. G. Roffey, Photopolymerization of surface coatings: Wiley 1982.
[13] 陽建文, 曾兆華, and 陳用烈, "光固化塗料及應用," 化學工業出版社, 2004.
[14] F. Bao and W. Shi, "Synthesis and properties of hyperbranched polyurethane acrylate used for UV curing coatings," Progress in Organic Coatings, vol. 68, pp. 334-339, 2010.
[15] P. .Liu, A. Gu, G. Liang, Q. Guan, and L. Yuan, "Preparation and properties of novel high performance UV-curable epoxy acrylate/hyperbranched polysiloxane
coatings," Progress in Organic Coatings, vol. 74, pp. 142-150, 2012.
[16] Y. Amao, "Probes and Polymers for Optical Sensing of Oxygen," Microchimica Acta, vol. 143, pp. 1-12, 2003.
[17] 劉瑞祥, "感光性高分子," 復文書局, 2002.
[18] K. Matyjaszewski and T. P. Davis, "Handbook of Radical Polymerization," ed: . 2003, p. 191.
[19] J. Segurola, N. S. Allen, M. Edge, A. McMahon, and S. Wilson, "Photoyellowing and discolouration of UV cured acrylated clear coatings systems: influence of photoinitiator type," Polymer Degradation and Stability, vol. 64, pp. 39-48, 1999.
[20] 宋維孝, "UV硬化塗料/印墨最新動向," 高分子工業, vol. 61, pp. 87-92, 1995.
[21] H. Xu, F. Qiu, T. Wang, W. Wu, D. Yang, and Q. Guo, "UV-curable waterborne polyurethane-acrylate: preparation, characterization and properties," Progress in Organic Coatings, vol. 73, pp. 47-53, 2012.
[22] Z. Doğruyol, N. Arsu, S. N. ğruyol, and Ö. Pekcan, "Producing critical exponents from gelation for various photoinitiator concentrations; a photo differential scanning calorimetric study," Progress in Organic Coatings, vol. 74, pp. 181-185, 2012.
[23] G. Odian, "Principles of Polymerization," p. 380, 2004.
[24] M. Sangermano and V. C. James, Visible and Long-Wavelength Cationic Photopolymerization vol. 847: American Chemical Society, 2003.
[25] G. Moad and D. H. Solomon, The Chemistry Of Radical Polymerization, 2nd ed.: Elsevier Science Limited, 2006.
[26] D. Burget, C. Mallein, and J. P. Fouassier, "Photopolymerization of thiol–allyl ether and thiol–acrylate coatings with visible light photosensitive systems," Polymer, vol. 45, pp. 6561-6567, 2004.
[27] 黃忠良譯著, 工程陶瓷. 台南市: 復漢出版社, 1992.
[28] L. Lecamp, B. Youssef, C. Bunel, and P. Lebaudy, "Photoinitiated polymerization of a dimethacrylate oligomer: 1. Influence of photoinitiator concentration, temperature and light intensity," Polymer, vol. 38, pp. 6089-6096, 1997.
[29] J. V. Crivello and U. Varlemann, "The synthesis and study of the photoinitiated cationic polymerization of novel cycloaliphatic epoxides," Journal of Polymer Science Part A: Polymer Chemistry, vol. 33, pp. 2463-2471, 1995.
[30] C. Decker, J. Faure, M. Fizet, and L. Rychla, "Elimination of oxygen inhibition in photopolymerization," Photogr. Sci. Eng., vol. 23, pp. 137-140, 1979.
[31] C. Decker and A. D. Jenkins, "Kinetic approach of oxygen inhibition in ultraviolet- and laser-induced polymerizations," Macromolecules, vol. 18, pp. 1241-1244, 1985.
[32] E. Andrzejewska, "photopolymerization kinetics of multifuctional monomers,"
coatings," Progress in Organic Coatings, vol. 74, pp. 142-150, 2012.
[16] Y. Amao, "Probes and Polymers for Optical Sensing of Oxygen," Microchimica Acta, vol. 143, pp. 1-12, 2003.
[17] 劉瑞祥, "感光性高分子," 復文書局, 2002.
[18] K. Matyjaszewski and T. P. Davis, "Handbook of Radical Polymerization," ed: . 2003, p. 191.
[19] J. Segurola, N. S. Allen, M. Edge, A. McMahon, and S. Wilson, "Photoyellowing and discolouration of UV cured acrylated clear coatings systems: influence of photoinitiator type," Polymer Degradation and Stability, vol. 64, pp. 39-48, 1999.
[20] 宋維孝, "UV硬化塗料/印墨最新動向," 高分子工業, vol. 61, pp. 87-92, 1995.
[21] H. Xu, F. Qiu, T. Wang, W. Wu, D. Yang, and Q. Guo, "UV-curable waterborne polyurethane-acrylate: preparation, characterization and properties," Progress in Organic Coatings, vol. 73, pp. 47-53, 2012.
[22] Z. Doğruyol, N. Arsu, S. N. ğruyol, and Ö. Pekcan, "Producing critical exponents from gelation for various photoinitiator concentrations; a photo differential scanning calorimetric study," Progress in Organic Coatings, vol. 74, pp. 181-185, 2012.
[23] G. Odian, "Principles of Polymerization," p. 380, 2004.
[24] M. Sangermano and V. C. James, Visible and Long-Wavelength Cationic Photopolymerization vol. 847: American Chemical Society, 2003.
[25] G. Moad and D. H. Solomon, The Chemistry Of Radical Polymerization, 2nd ed.: Elsevier Science Limited, 2006.
[26] D. Burget, C. Mallein, and J. P. Fouassier, "Photopolymerization of thiol–allyl ether and thiol–acrylate coatings with visible light photosensitive systems," Polymer, vol. 45, pp. 6561-6567, 2004.
[27] 黃忠良譯著, 工程陶瓷. 台南市: 復漢出版社, 1992.
[28] L. Lecamp, B. Youssef, C. Bunel, and P. Lebaudy, "Photoinitiated polymerization of a dimethacrylate oligomer: 1. Influence of photoinitiator concentration, temperature and light intensity," Polymer, vol. 38, pp. 6089-6096, 1997.
[29] J. V. Crivello and U. Varlemann, "The synthesis and study of the photoinitiated cationic polymerization of novel cycloaliphatic epoxides," Journal of Polymer Science Part A: Polymer Chemistry, vol. 33, pp. 2463-2471, 1995.
[30] C. Decker, J. Faure, M. Fizet, and L. Rychla, "Elimination of oxygen inhibition in photopolymerization," Photogr. Sci. Eng., vol. 23, pp. 137-140, 1979.
[31] C. Decker and A. D. Jenkins, "Kinetic approach of oxygen inhibition in ultraviolet- and laser-induced polymerizations," Macromolecules, vol. 18, pp. 1241-1244, 1985.
[32] E. Andrzejewska, "photopolymerization kinetics of multifuctional monomers,"
Prog. Polym. Sci., vol. 26, pp. 605-665, 2001.
[33] 嚴孝全, "陶瓷雷射燒結快速原型技術之研發," 博士, 機電科技研究所, 國立臺北科技大學, 臺北市, 2005.
[34] F. R. Wight, "Oxygen inhibition of acrylic photopolymerization," Journal of Polymer Science: Polymer Letters Edition, vol. 16, pp. 121-127, 1978.
[35] D. L. Kurdikar and N. A. Peppas, "A kinetic study of diacrylate photopolymerizations," Polymer, vol. 35, pp. 1004-1011, 1994.
[36] L. Lecamp, B. Youssef, C.Bunel, and P. Lebaudy, "Photoinitiated polymerization of a dimethacrylate oligomer: 1. Influence of photoinitiator concentration, temperature and light intensity," Polymer, vol. 38, pp. 6089-6096, 1997.
[37] L. Lecamp, B. Youssef, C.Bunel, and P. Lebaudy, "Photoinitiated polymerization of a dimethacrylate oligomer: 2. Kinetic studies," Polymer, vol. 40, pp. 1403-1409, 1999.
[38] L. Lecamp, B. Youssef, C.Bunel, and P. Lebaudy, "Kinetic studies of photoinitiated polymerization of a dimethacrylate oligomer," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 151, pp. 285-289, 1999.
[39] W. D. Cook, "Thermal aspects of the kinetics of dimethacrylate photopolymerization," Polymer, vol. 33, pp. 2152-2161, 1992.
[40] J. G. Kloosterboer, G. F. C. M. Lijten, and H. M. J. Boots, "Network formation by chain crosslinking photopolymerization and some applications in electronics," Makromolekulare Chemie. Macromolecular Symposia, vol. 24, pp. 223-230, 1989.
[41] K. S. Anseth, S. M. Newman, and C. N. Bowman, "Polymeric dental composites: Properties and reaction behavior of multimethacrylate dental restorations," Advances in Polymer Science, vol. 122, pp. 177-217, 1995.
[42] C. N. Bowman and N. A. Peppas, "Coupling of kinetics and volume relaxation during polymerizations of multiacrylates and multimethacrylates," Macromolecules, vol. 24, pp. 1914-1920, 1991.
[43] C. N. Bowman and N. A. Peppas, "A kinetic gelation method for the simulation of free-radical polymerizations," Chemical Engineering Science, vol. 47, pp. 1411-1419, 1992.
[44] B. Hacioğlu, K. A. Berchtold, L .G. Lovell, J. Nie, and C. N. Bowman, "Polymerization kinetics of HEMA/DEGDMA: using changes in initiation and chain transfer rates to explore the effects of chain-length-dependent termination," Biomaterials, vol. 23, pp. 4057-4064, 2002.
[45] K. Owusu-Adom and C. A. Guymon, "Photopolymerization kinetics of poly(acrylate)–clay composites using polymerizable surfactants," Polymer, vol.
[57] R. V. Ghorpade, S. M. Bhosle, S. Ponrathnam, C. R. Rajan, N. N. Chavan, and R. Harikrishna, "Photopolymerization kinetics of 2-phenylethyl (meth)acrylates studied by photo DSC," Journal of Polymer Research, vol. 19, pp. 1-8, 2012.
[58] L. Ji, W. Chang, M. Cui, and J. J. Nie, "Photopolymerization kinetics and volume shrinkage of 1,6-hexanediol diacrylate at different temperature," Journal of Photochemistry and Photobiology A: Chemistry, vol. 252, pp. 216-221, 2013.
[59] K. S. Anseth, C. M. Wang, and and C. N. Bowman, "Reaction behaviour and kinetic constants for photopolymerizations of multi(meth)acrylate monomers," Polymer, vol. 35, p. 3243, 1993.
[60] A. Maffezzoli and R.Terzi, "Effect of irradiation intensity on the isothermal photopolymerization kinetics of acrylic resins for stereolithography," Thermochimica Acta, vol. 321, pp. 111-121, 1998.
[61] T. F. Scott, W. D. Cook, and J. S. Forsythe, "Photo-DSC cure kinetics of vinyl ester resins. I. Influence of temperature," Polymer, vol. 43, pp. 5839–5845, 2002.
[62] T. F. Scott, W. D. Cook, and J. S. Forsythe, "Photo-DSC cure kinetics of vinyl ester resins II influence of diluent concentration," Polymer, vol. 44, pp. 671–680, 2003.
[63] J. D. Cho, H. T. Ju, and J. W. Hong, "Photocuring kinetics of UV-initiated free-radical photopolymerizations with and without silica nanoparticles," Journal of Polymer Science Part A: Polymer Chemistry, vol. 43, pp. 658-670, 2004.
[64] Technical Bull Pigments NO.11, company publication, Degussa AG.
[65] M. Atai and D. C. Watts, "A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers," Dent Mater, vol. 22, pp. 785-791, Aug 2006.
[66] A. Nebioglu and M. D. Soucek, "Reaction kinetics and network characterization of UV-curing polyester acrylate inorganic/organic hybrids," European Polymer Journal, vol. 43, pp. 3325-3336, 2007.
[67] W. S. Kim, K. S. Park, J. H. Nam, D. Shin, S. Jang, and T. Y. Chung, "Fast cure kinetics of a UV-curable resin for UV nano-imprint lithography: Phenomenological model determination based on differential photocalorimetry results," Thermochimica Acta, vol. 498, pp. 117-123, 2010.
[68] M. R. Kamal and S. Sourour, "Kinetics and thermal characterization of thermoset cure," Polymer Engineering & Science, vol. 13, pp. 59-64, 1973.
[69] A. Ibrahim, V. Maurin, C. Ley, X. Allonas, C. Croutxe-Barghorn, and F. Jasinski, "Investigation of termination reactions in free radical photopolymerization of UV powder formulations," European Polymer Journal, vol. 48, pp. 1475-1484, 2012.
[70] J. R. Fried, Polymer Science and Technology, 2nd ed.: Prentice Hall, 2003.
[71] 林尚安, 陆耘, and 梁兆熙, 高分子化学vol. 1. 北京: 科学出版社, 1982.
[72] A. Maffezzoli, A. D. Pietra, S. Rengo, L. Nicolais, and G. Valletta, "Photopolymerization of dental composite matrices," Biomaterials, vol. 15, pp. 1221-1228, 1994.
[73] K.-H. Kuo, W.-Y. Chiu, and T.-M. Don, "Kinetic behavior of photo-polymerization of UV-curable resins with carboxylic acid and amino groups," Journal of Applied Polymer Science, vol. 115, pp. 1982-1994, 2010.
[74] S.W. Benson and A. M. North, "The kinetics of free radical polymerization under conditions of diffusion-controlled termination," Journal of the American Chemical Society, vol. 84, pp. 935-940, 1962.
[75] J. N. Cardenas and K. F. O''Driscoll, "High-conversion polymerization. I. Theory and application to methyl methacrylate," J Polym Sci Polym Chem Ed, vol. 14, pp. 883-897, 1976.
[76] S. K. Soh and D.C. Sundberg, "Diffusion-controlled vinyl polymerization. I. The gel effect," Journal of Polymer Science: Polymer Chemistry Edition, vol. 20, pp. 1299-1313, 1982.
[77] G. I. Litvinenko and V.A. Kaminsky, "Role of diffusion-controlled reactions in free-radical polymerization," Progress in Reaction Kinetics, vol. 19, pp. 139-193, 1994.
[78] G. A. O''Neil and J. M. Torkelson, "Modeling insight into the diffusion-limited cause of the gel effect in free radical polymerization," Macromolecules, vol. 32, pp. 411-422, 1999.
[79] T. J. Tulig and M. Tirrell, "On the onset of the Trommsdorff effect," Macromolecules, vol. 15, pp. 459-463, 1982.
[80] S. T. Balke and A. E. Hamielec, "Bulk polymerization of methyl methacrylate," Journal of Applied Polymer Science, vol. 17, pp. 905-949, 1973.
[81] L. H. Peebles, "Molecular weight distributions in polymers.," vol. 18, ed: Interscience Publishers, 1971.
[82] J.G. Kloosterboer, "Network formation by chain crosslinking photopolymerization and its applications in electronics," Advances in Polymer Science, vol. 84, pp. 1-61, 1988.
[83] H. M. J. Boots, J. G. Kloosterboer, G. M. M. Van De Hei, and R. B. Pandey, "Inhomogeneity during the bulk polymerisation of divinyl compounds: Differential scanning calorimetry experiments and percolation theory," British Polymer Journal, vol. 17, pp. 219-223, 1985.
[84] J. S. Young and C. N. Bowman, "Effect of Polymerization Temperature and Cross-Linker Concentration on Reaction Diffusion Controlled Termination," Macromolecules, vol. 32, pp. 6073-6081, 1999.
[85] 汪建民, 材料分析. 新竹市: 中國材料科學學會, 1997.
[86] S. K. Çekingen, F. Saltan, Y. Yildirim, and H. Akat, "A novel HEMA-derived monomer and copolymers containing side-chain thiophene units: Synthesis, characterization and thermal degradation kinetics," Thermochimica Acta, vol. 546, pp. 87-93, 2012.
[87] S. J. Wang, X. D. Fan, J. Kong, and J. R. Lu, "Synthesis, characterization and UV curing kinetics of hyperbranched polysiloxysilanes from A2 and CB2 type monomers," Polymer, vol. 50, pp. 3587-3594, 2009.
[88] R. V. Ghorpade, S. M. Bhosle, S. Ponrathnam, C. R. Rajan, N. N. Chavan, and R. Harikrishna, "Photopolymerization kinetics of 2-phenylethyl (meth)acrylates studied by photo DSC," Journal of Polymer Research, vol. 19, pp. 1-8, 2012.
[89] T. M. Lovestead, A. K. O’Brien, and C. N. Bowman, "Models of multivinyl free radical photopolymerization kinetics," Journal of Photochemistry and Photobiology A: Chemistry, vol. 159, pp. 135-143, 2003.
[90] J. Brandrup, E. H. Immergut , and E. A. Grulke, Polymer Handbook, 4 ed.: John Wiley and Sons, Inc., 1999.
[91] T. J. Smith, B. S. Shemper, J. S. Nobles, A. M. Casanova, C. Ott, and L. J. Mathias, "Crosslinking kinetics of methyl and ethyl (α-hydroxymethyl)acrylates: effect of crosslinker type and functionality," Polymer, vol. 44, pp. 6211-6216, 2003.
[92] N. Davidenko, O. García, and R. Sastre, "Photopolymerization kinetics of dimethacrylate-based light-cured dental resins," Journal of Applied Polymer Science, vol. 97, pp. 1016-1023, 2005.
[93] M. Alvarez, N. Davidenko, R.García, A. Alonso, R. Rodrıguez, R. M. Guerra, and R. Sastre, "Kinetic study of the photopolymerization of a bisphenol-A-bis (glycidylmethacrylate)/triethyleneglycol dimethacrylate system in hydroxyapatite-filled composites," Polymer International, vol. 48, pp. 699-704, 1999.
[94] M. J. M. Abadie, O. O. Novikova, V. Yu. Voytekunas, V. G. Syromyatnikov, and A. Yu. Kolendo, "Differential scanning photocalorimetry studies of 1,6-hexanedioldiacrylate photopolymerization initiated by some organic azides," Journal of Applied Polymer Science, vol. 90, pp. 1096-1101, 2003.
[95] L. Zhao and X. Hu, "A variable reaction order model for prediction of curing kinetics of thermosetting polymers," Polymer, vol. 48, pp. 6125-6133, 2007.
[96] M. Ogawa and K. Kuroda, "Preparation of Inorganic–Organic Nanocomposites through Intercalation of Organoammonium Ions into Layered Silicates," Bulletin of the Chemical Society of Japan, vol. 70, pp. 2593-2618 1997.
[97] F. M. Uhl, S. P. Davuluri, Shing-Chung Wong, and D. C. Webster, "Polymer Films Possessing Nanoreinforcements via Organically Modified Layered
Silicate," Chemistry of Materials, vol. 16, pp. 1135-1142, 2004.
[98] K. Demirelli, M.Coşkun, and E. Kaya, "A detailed study of thermal degradation of poly(2-hydroxyethyl methacrylate)," Polymer Degradation and Stability, vol. 72, pp. 75-80, 2001.
[99] D. Braun and R. Steffan, "Gas chromatographic determination of pyrolysis products from poly(2-hydroxyethyl methacrylate)," Polymer Bulletin, vol. 3, pp. 111-114, 1980.
[100] A. S. Luyt, M. D. Dramićanin, Ž. Antić, and V. Djoković, "Morphology, mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler," Polymer Testing, vol. 28, pp. 348-356, 2009.
[101] A. Laachachi, M. Cochez, M. Ferriol, J. M. Lopez-Cuesta, and E. Leroy, "Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly(methyl methacrylate) (PMMA)," Materials Letters, vol. 59, pp. 36-39, 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔