跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建宏
研究生(外文):Chien-Hung Chen
論文名稱:以微波反應沸石處理一氧化氮之研究
論文名稱(外文):A Study of Nitric Oxide Treatment by Zeolite With Microwave System
指導教授:林文印林文印引用關係
口試委員:陳志傑鄭福田蘇春熺章裕民
口試日期:2013-04-02
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:95
中文關鍵詞:一氧化氮微波沸石
外文關鍵詞:Nitric oxidemicrowavezeolite
相關次數:
  • 被引用被引用:2
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮氧化物是造成酸雨和光化學煙霧的重要前趨物之一,控制氮氧化物排放量的方法可分為燃燒控制與後燃燒控制,但是在很多情況下,燃燒控制並不能很有效的達到所要求的標準,所以需以後燃燒控制法來處理氮氧化物。其中又以選擇性觸媒還原法較為普遍,但是其在還原過程中還原劑的溢散、腐蝕等問題還有待解決,所以再找尋更合適的技術是刻不容緩的事。
本研究製備碳改質沸石(C-ZSM5),並利用微波誘導催化作用處理一氧化氮,微波可使C-ZSM5內部迅速加熱,產生活性熱點,NO分子以這些活性熱點位為反應中心,與C-ZSM5發生還原反應,轉化為N2。
研究結果顯示,C-ZSM5之質量越多,氮氧化物去除效率隨之增加,以本實驗系統操作,最佳去除效率條件為180g的C-ZSM5於300W之微波功率下,可使NO達到90%以上之去除效率。此外,利用微波加熱反應,使C-ZSM5表面溫度隨微波輸出功率增加而上升,以微波輸出功率300W為例,加熱15分鐘後可達到約110℃。
由SEM和BET分析結果顯示,與未改質之ZSM-5相比,C-ZSM5增加些許碳材之熔融狀物質,但可能造成孔洞阻塞,使C-ZSM5比表面積下降,當反應微波功率越高,C-ZSM5微孔體積有增加的趨勢,比表面積隨之上升。


Nitrogen oxides (NOX) are important precursors of acid rain and photochemical smog. Combustion controls and post-combustion controls are the two main categories for NOx emission reduction techniques. However, combustion controls along are not effective enough to achieve the regulation requirement in most cases. Therefore, adaptation of post-combustion controls to remove NOx from the exhausted stream is usually needed. Amongst all the pos-combustion techniques, SCR method is one of the common practices. Yet, during the process of most SCR method, the corrosive reductants can lead to further pollution. As a result, developing alternative control technology is of the highest priority to effectively reduce NOx emission for the industry.
This research used thecarbon-zeolite socony mobil (C-ZSM5) to absorb NO, and employedmicrowave discharge to assisted catalysis C-ZSM5. C-ZSM5 internalwasrapidly heatedto a high temperaturetoproduce an activehot spot,these activehotspot reduced NO in C-ZSM5, and NO converted toN2.
The results show that the conversion of NO to N2 increased with the amount of C-ZSM5 increased. The optimum conversion efficiency of NOcould reach above 90% with microwave power of 300W andamount of C-ZSM5 was 180g. Temperature of the C-ZSM5 rose gradually and reached to approximately 110℃under microwave power output was 300W after 15 minutes. The higher microwave power output was, the higher temperature of C-ZSM5was.
The adsorption on and desorption from C-ZSM5 concern with a porous system, that may differ from slit to spherical shaped properties. According to SEM and BET analysis, the C-ZSM5 was covered by the carbon materials successfully. However, the carbon material may causeholesobstruction, and then the specific surface area of C-ZSM5 was decreased. As the microwave power increased, the specific surface area of C-ZSM5 was increased. Accordingly, the C-ZSM5 was supposed to have larger micropore volume and specific surface area under 500 W of microwave power.


摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
第二章 文獻回顧 4
2.1氮氧化物 5
2.1.1一氧化氮的生成機制 5
2.1.2二氧化氮的生成機制 8
2.1.3氮氧化物對人體產生之影響 10
2.1.4氮氧化物的控制技術 11
2.2微波輻射技術 15
2.2.1微波簡介 15
2.2.2微波介質加熱 17
2.2.3微波材質 18
2.2.4微波特性 18
2.2.5微波誘導催化反應 19
2.2.6微波技術之應用 20
2.2.7微波設備的安全防護 25
2.3沸石的特性與應用 27
2.3.1 沸石結構及分類 27
2.3.2 ZSM-5 沸石簡介 28
2.3.3 沸石之吸附機制 30
2.3.4 沸石改質方法 31
第三章 研究設備與方法 33
3.1 實驗設計與流程 33
3.2碳改質沸石(C-ZSM5) 35
3.2.1 實驗藥品 35
3.2.2製備方法 35
3.3實驗設備 36
3.3.1 微波反應系統 36
3.3.2 實驗氣體及試劑 39
3.3.3 實驗分析設備 39
3.4實驗設計之操作參數 41
3.5研究項目 42
3.5.1吸附實驗 42
3.5.2微波處理條件之探討 42
3.5.3 C-ZSM5在反應管之停留時間 43
3.5.4微波反應C-ZSM5之溫度變化 43
3.5.5溫度去除效率迴歸分析 43
3.5.6 脫附實驗 43
3.5.7 微波反應C-ZSM5之尾氣溫度變化 43
3.5.8 SEM及BET比表面積分析 43
3.6品保與品管 45
3.6.1數據品保工作項目及執行方法 45
3.6.2監測儀器校正 45
3.6.3微波功率校正 45
3.6.4系統洩漏量之檢查 46
3.6.5微波洩漏量之檢測 46
第四章 結果與討論 48
4.1 微波功率校正 48
4.2 吸附實驗 50
4.3 微波處理條件之探討 51
4.3.1不同進氣濃度之影響實驗 51
4.3.2 不同微波功率之影響實驗 51
4.3.3 不同C-ZSM5質量之影響實驗 52
4.4 C-ZSM5在反應管之停留時間 57
4.5 微波反應C-ZSM5之表面溫度變化 58
4.6 溫度去除效率迴歸分析 62
4.7 脫附實驗 66
4.8 微波反應C-ZSM5之尾氣溫度變化 68
4.9 SEM、BET分析結果 70
第五章 結論與建議 75
5.1 結論 75
5.2 建議 77
參考文獻 78
附錄 86
A:MSDS-NO 86
B:MSDS-NO2 89
C:微波爐之微波洩漏量檢測 92



[1]Altwicker, E.R. and R. K. Kondri, “Hydrodynamic Aspects of Spouted Beds at Elevated Temperatures”, Combust. Sci. and Tech., Vol. 87, pp.173-197, 1992.
[2]Barnes, J. M., W. A. Apel and K.B. Barrett, “Romoval of Nitrogen Oxides from Gas Streams Using Biofiltration”, Journal of Hazardous Materials, Vol.41, pp.315-326, 1995.
[3]Beer, J. M., A. F. Sarofim and Y. Y. Lee, “NO Formation and Reduction in Fluidized Bed Combustion of Coal”, Proc. Inter. Conf. Fluid. Bed Combust.,pp.942-955, 1980.
[4]Beer, J. M. and G. B. Martin, “Application of Advanced Technology for NOx Contorl: Alternate Fuels and Fluidized-Bed Coal Combustion”, AIChE Symp. Ser., 74(175) , pp.93-114, 1978.
[5]Breck, D.W., “Zeolite molecular sieves”, New York: Wiley, 1974
[6]Buenger, C. and E. Peterson, “A novel technology for the reduction of NOx on char by microwaves”, Material Research Society Spring Meeting, San Francisco, 1994.
[7]Cha, Chang Yul and Dong Sik Kim, “Microwave induced reactions of sulfur dioxide and nitrogen oxides in char and anthracite bed”,Carbon, Vol.39, pp.1159-1166, 2000.
[8]Cha, Chang Yul and Yougen Kong, “Enhancement of NOx adsorption capacity and rate of char by microwaves”, Carbon, Vol.33(8), pp.1141-1146, 1995.
[9]Cha, C.Y., “28th International microwave power institute symposium”, 74, 1993.
[10]Chen, C., Hong, P., Dai, S., Kan, J., “Faraday Trans”, (91)pp.1179-1180, 1995.
[11]Corma, A., V. Fornes and E. Palomares, “Selective catalytic reduction of NOx on Cu-beta zeolites”, Applied Catalysis B:Environment, Vol.110, pp.233-243, 1997.
[12]Cooper, C.D., Alley, F. C., “Air Pollution Control:A Design Approach” , Second Edition, 1994.
[13]Chang, S. G., D. Littlejohn and S. Lynn, “Effects of Metal Chelates of Wet Flue Gas Scrubbing Chemistry”, Environ. Sci. Technol., Vol.17, pp.649-653, 1983.
[14]Claudino, A., J. L. Soares, R. F. Moreira and H. J. Jose, “Adsorption equilibrium and breakthrough analysis for NO adsorption on activated carbons at low temperatures”, Carbon 42, pp.1483-1490, March 2004.
[15]Cuccurullo, G., P. G. Berardi, R. Carfagna and V. Pierro, “IR temperature measurements in microwave heating”, Infrared Physics & Technology,Vol.43, pp.145-150, 2002.
[16]Daniela, Pietrogiacomi, Sannino Diana, Tuti Simonetta, Ciambelli Paolo, Indovina Valerio, Occhiuzzi Manlio and Pepe Franco, “The catalytic activity of CuOx/ZrO2 for the abatement of NO with propene or ammonia in the presence of O2”, Applied Catalysis B:Environment, Vol.21, pp.141-150, 1999.
[17]Degnan, T.F., Chitnis, G.K., Schipper, P.H.,“History of ZSM-5 fluid catalytic cracking additive development at Mobil”, Microporous and Mesoporous Materials, Vol. 35-36, pp.245-252, 2000.
[18]Elder, J. W. and M. Holtz, “Microwave Microscale Organic Experiment”, J.Chem. Educ, 73, A104, 1996.
[19]Fang, C. S., K. L. Bruce and M. C. Peter, “Microwave Demulsification”, Chem. Eng. Comm., Vol.73, pp.227-239,1988.
[20]Fuente, M. A., A. Olano and M. Juarez, J. Agric, Food chem. Vol.50, pp.2274-2277, 2002.
[21]Furusawa, T., T. Honda, J. Takano and D. Kunii, “Abatement of Nitric Oxide Emission in Fluidized Bed Combustion of Coal”, J. Chem. Eng. Japan, 11(3), pp.377-383, 1978.
[22]Fenimore, C. P. and J. Moore, “Quenched Carbon Monoxide in Fuel-Lean Flsme Gased”, Combustion and Flame, 22, pp.343-351, 1974.
[23]George, C. E. and G. R. Lightsey, “PVC Waste Recovery Utilizing Electromagnetic Energy”, Presented at AIChE Annual Meeting, April 1989.
[24]Gervasini, A., Picciau, C., Auroux, A., “Characterization of copper-exchanged ZSM-5 and ETS-10catalysts with low and high degrees of exchange” Microporous and Mesoporous Materials, vol.35–36, pp.457–469, 2000.
[25]Griwatz, I. and G. Rotzoll, “Intrinsic Fractional Conversion of Char-Nitrogin into NO in Fluidized Bed Combustion of Coal Char”, Proc. 2nd Inter. Symp. On Coal Combust. Sci Tech, pp.409-416, 1991.
[26]Gregg, S. J., Sing, K. S.W., Adsorption, Surface Area and Porosity,New York: Academic Press, NY, 1982.
[27]Groot, D.E., William, F., Osterheld, T.H., et al. “Chemisorption of oxygen and of nitric oxide on cellulosic chars”, Carbon, vol.29(2), pp.185-189, 1991.
[28]Haynes, B. S., D. Iverach and N. Y. Kirov, “The Behavior of Nitrogen Species in Fuel Rich Hydrocarbon Flames”, in Fifteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp.1103-1112, 1975.
[29]Haque, K. E., “Microwave Energy for Mineral Treatment Processes-a Brief Review”, International Journal of Mineral Processing, Vol.57, pp.1-24,1999.
[30]IIT Research Institute, “Decontaminating Hazardous Wastes in Soils with Radio Waves”, Chem. Eng. pp.23 Aug15, 1988.
[31]Iwamoto, M., Yahiro, H., Torikai, Y., Yoshioka, T., Mizuno, N., “Novel Preparation Method of Highly Copper Ion-exchanged ZSM-5 Zeolite and Their Catalytic Activities for No Decomposition” Chemistry Letters, vol.19, pp.1967-1970, 1989.
[32]Jones, D. A., Lelyveld T. P., Mavrofidis S. D., Kingman S. W., Mile N. J., “Microwave heating applications in environmental engineering-a review”, Resources, Conservation and Recycling , Vol.34, pp.75–90, 2002.
[33]Jou, G. Chih-Ju, “Application of activated carbon in a microwave radiation field to treat trichloroethylene”, Carbon, Vol.36, pp.1643-1648, 1998.
[34]Kong, Y. and C. Y. Cha, “Reduction of NOx adsorbed on char with microwave energy”, Carbon, Vol.34 (8), pp.1035-1040, 1996a.
[35]Kong, Y. and C. Y. Cha, “NOx adsorption on char in presence of oxygen and moisture”, Carbon, Vol.34 (8), pp.1027-1033, 1996b.
[36]Kim, J., Suel, K., Dong, S., et al. “Characteristic of micmwave induced NO decomposition on anthracite bed”,Fuel science Technology, vol.1l(9), pp.1175-1183, 1993.
[37]Kingston, H. M. and L.B. Jassie, “Introduction to microwave sample preparation”, Washington, DC. pp.7-31. 1988
[38]Kingston, H. M. and L. B. Jassie, “Presented at the Eastern Analytical Symposia”, New York, 1986.
[39]Lee, Y. Y., A. Sekthira and C. M. Wong , “The effects of calcined limestones on the NH3-NO-O2 reactions”,Proc. Int. Conf. Fluid. Bed Combust., 8th, pp.1208~1218, 1985.
[40]Link, D.D., P.J. Walter, Kingston, H.M., Environ.Sci.Technol., Vol.33, pp.2469-2473, 1999.
[41]Marek, A. Wojtowicz, Francis P. Miknis, R. W. Grimes, Wayne W. Smith and Michael A. Serio, “Control of nitric oxide, nitrous oxide, and ammonia emissions using microwave plasmas”, Journal of Hazardous Materials, Vol.74, pp.81-89, 2000.
[42]Marilena, T. Radoiu, I. Diana Martin and Ioan Calinescu, “Emission control of SO2 and NOX by irradiation methods “, Journal of Hazardous Materials, Vol.97, pp.145-158, 2003.
[43]Mirafzal, G. A. and J. M. Summer, “Microwave Irradiation Reactions : Synthesis of Analgesic Drugs”, J.Chem.Educ., 77, pp.356, 2000.
[44]Miller, J. A. and C. T. Bowman, “Mechanism and modeling of Nitrogen Chemistry in Combustion”, Prog. Energy Combust. Sci., 15, pp.287-338, 1989.
[45]Neathery, J. K., A. M. Rubel, J. M. Stencel, “Uptake of NOx by activated carbons: bench-scale and pilot-plant testing”, Carbon, Vol.35(9), pp.1321–7, 1997
[46]Niessen, W. R., “Combustion and incineration processes”, Monticello, New York: Marcel Dekker. Inc, 1994.
[47]Nelson, P. F. and M. S. Kelly and M. J. Wornat, “Conversion of Fuel Nitrogen in Coal Volatioles to NOx Precursors under Rapid Heating Conditions”, FuelVol.70, pp.403-407, 1991.
[48]Ohman, L. O., Ganemi, B., Bjornbom, E., Rahkamaa, K., Keiski, R. L., Paul, J.“Catalyst preparation through ion-exchange of zeolite Cu-, Ni-, Pd-, CuNi- and CuPd-ZSM-5” Materials Chemistry and Physics, Vol.73, pp.263-267, 2002.
[49]Parquet, E. and Q. Lin, “Microwave Assisted Wolff-Kishner Reduction”, J.Chem.Educ. Vol.74 , pp.1225, 1997.
[50]Pan, X., H. Liu, G. Jia and Y. Shu, Biochemical Engineering Journal, Vol.5, pp.173-177, 2000.
[51]Penchev, V., Minchev, C., Kanazirev, V., Pencheva, O., Borisova, L., Lechert, H., Kacirek, H., Zeolites, Vol.3, pp. 249, 1983.
[52]Pisanu, A. M. and C. E. Gigola, “NO decomposition and NO reduction by CO over Pd/γ-Al2O3”, Applied Catalysis B:Environment, Vol.20, pp.179-189, 1999.
[53]Pinna, F., “Supported metal catalysts preparation” Catalysis Today, vol.41, pp.129-137, 1998.
[54]Prevot, A. B., M. Gulmin, E. Pramauro, Anal. Chem. 73, pp.3790-3795, 2001.
[55]Rubel, A. M., M. L. Stewart and J. M. Stencel, “The influence of activated carbon type on NOx adsorption capacity”, Reduction of Nitrogen Oxide Emissions, Vol.587 (16), pp.208–16, 1995.
[56]Ruthven, D.M., “Principles of adsorption and adsorption process” New York: John Wiley & Sons, 1984.
[57]Sada, E., H. Kumazawa and Y. Yoshikawa, “Simultaneous Removal of NO and SO2 by Absorption into Aqueous, Mixed Solutions”, AIChE J., Vol.34, pp.1215-1220, 1988.
[58]Shelley, S., “Microwaves Surge in the CPI-Uses Range From Processing to Waste Treatment”, Chem. Eng., pp.19, Jan. 1989.
[59]Sho, K., Dean T Tompkins and Walter A Zeltner, “Photocatalytic oxidation in the presence of microwave irradiation: observations with ethylene and water”, Journal of Photochemistry and Photobiology A: Chemistry, Vol.148, pp.323-330, 2002.
[60]Sedhom, E., L.Dauerman, N. Ibrahim, G. Windgasse, Journal Microwave power and Electromagnetic Energy, 27(2), pp.81-86, 1992.
[61]Stenzel, M. H., “Remove Organics by Activated Carbon Adsorption”, Chemical Engineering Progress, pp.36-43, 1993.
[62]Tang, Q., Zhang Zhigang and Cao Zidong, “SO2 and NO selective adsorption properties of coal – based activated carbons”, FUEL Journal, Vol.36, pp.1-7, 2004.
[63]Tang, J., Zhang, T., Liang, D., “Yang, H., Li, N., Lin, L., Direct decomposition of NO by microwave heating over Fe/NaZSM-5”, Applied Catalysis B: Environmental, Vol.36(1), pp. 1-7, 2002.
[64]Teng, H., Yung-Fu Hsu and Ying-Tsung Tu, “Reduction of NO with NH3 over carbon catalysts – the influence of carbon surface structures and the global kinetics”, Applied Catalysis B:Environment, Vol.20, pp.145-154, 1999.
[65]Weisz, P.B.,The 7th International Congress on Catalysis, Tokyo, pp.1, 1980.
[66]Wood, S. C., “Select the right NOx control technology”, Chemical Engineering Progress, pp.32-38, 1994.
[67]Wark, K. and C. F. Warner, Air pollution:Its origin and control, 2nd edition,USA: Harper Collins Publishers, 1981.
[68]Zhang, X., Hayward David O., Lee Colleen, “Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS2 catalysts”, Applied Catalysis B: Environmental, Vol.33, pp.137-148, 2001.
[69]Zhang, Q., Luo, J., Vileno, E., Suib, S. T., Chem.Mater. 9, pp.2090-2095, 1997.
[70]Zhang, R. and Schwarz, T. A., “Design of Inhomogeneous Metal Distribution Within Catalyst Particles” ,Applied Catalysis A: General, Vol. 91, pp.57, 1992.
[71]Zelodvich, Y. B., P. Y. Sadovinikov and D. A. Frank-Kamenetskii, “Oxidation of Nitrogen in Combustion”, M. Shelef, Tran., Academy of USSR, Institute of Chemical Phsics. Moscow-Leningrad, 1947.
[72]王俊杰,以觸媒氧化法處理一氧化氮之研究,碩士論文,環境工程研究所,國立中山大學,1999。
[73]王志龍,利用微波處理與光化學還原四氯乙烯之研究,碩士論文,環境與安全衛生工程系,國立高雄第一科技大學,2002
[74]王鵬,環境微波化學技術,化工圖書,2003。
[75]汪建民,材料分析,中國材料科學學會,1998。
[76]沈孝宗,以波洛斯凱特型觸媒催化NO還原反應之比較研究,博士論文,化工研究所,國立成功大學,1998。
[77]林勳佑,在噴流床中應用微波技術再生活性碳之可行性研究,碩士論文,環境工程研究所,中山大學,1996。
[78]吳柏青,「Microwave Energy Absorption in Porous Food Materials」,農業機械學刊,第一卷,第四期,第42-51頁,1992。
[79]吳榮宗,工業觸媒概論,新竹市: 國興出版社,1989。
[80]胡漢升,環境醫學,科技圖書有限公司,1998。
[81]侯瑞毅,以微波加熱活性碳固定床脫附二氯甲烷及三氯甲烷之研究,碩士論文,環境管理研究所,大仁技術學院,2004。
[82]馬雙忱,趙毅,馬宵穎等.「活性炭床加微波輻射脫硫脫硝的研究」,熱能動力工程,第338-341頁,2006。
[83]袁鈺鈞,以微波反應活性碳循環床處理NOx之研究,碩士論文,國立臺北科技大學環境工程與管理研究所,台北市,2005。
[84]孫嘉福、楊英賢、蔡瀛逸、劉明昭、賴文淙,環境化學,高立圖書有限公司,1998。
[85]孫萍、肖波、楊家寬、王秀萍,微波技術在環境保護領域的應用,華中科技大學環境科學與工程學院,中國, 2002。
[86]高健玲,微波加熱與微波萃取教學與實驗教材之設計,碩士論文,化學系,國立高雄師範大學,2002
[87]許薊,微波化學教學設計,碩士論文,化學系,國立高雄師範大學,2002。
[88]章裕民,環工化學,文京圖書有限公司,1996。
[89]陳志達,小型流體化床中操作參數對氧化亞氮排放之研究,碩士論文,化學工程學系,中原大學,2002。
[90]陳維新、江金龍,空氣污染與控制,高立圖書有限公司,2001。
[91]曹玉登,煤制活性碳及污染治理,中國:中國環境科學出版社,1995。
[92]童玉蘭,探討不同型態之ZSM-5沸石觸媒對甲苯歧化反應之影響,清大化工所,新竹市,1998。
[93]黃正義,空氣污染-污源與防治,淑馨出版社,1988。
[94]黃楷茗,微波反應活性碳循環床處理半導體業排放異丙醇與丙酮廢棄之研究,碩士論文,國立臺北科技大學環境工程與管理研究所,台北市,2007。
[95]董金明、林萍實,微波技術,機械工業出版社,中國,2003。
[96]廖志國,操作條件對微波再生活性碳效率之影響及產物分析研究,碩士論文,環境工程研究所,國立中山大學,1999。
[97]鄭福田,微粒導論,國立編譯館,1990。
[98]蔣本基,「活性碳物理化學特性對VOCs 吸附之影響」,工業污染防治,第58 期,1996。
[99]劉明翰,粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立,碩士論文,環境工程研究所,國立中山大學,2001。
[100]劉定忠,以超臨界CO2再生活性碳,博士論文,化學工程研究所,國立清華大學,1988。
[101]賴以賢、李王永泉,空氣污染防制工程,台北:美商麥格羅-希爾國際股份有限公司-台灣分公司,2002。
[102]張木榮,微波反應處理烹飪油煙多環芳香烴化合物之研究,碩士論文,國立臺北科技大學環境工程與管理研究所,台北市,2008。
[103]張君正、張木彬,「氮氧化物生成機制與控制技術之探討」,工業污染防治,第50期,1994。
[104]張國宇、王鵬、薑思朋、陳小英,環境微波技術及在環境工程中的應用,哈爾濱工業大學市政環境工程學院,中國,2004。
[105]藍友聰,張木彬,於陶瓷纖維紙上合成ZSM-5與Au/CeO2觸媒及反應性測,碩士論文,國立中央大學化學工程與材料工程研究所,中壢市,2006。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top