跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 19:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐運強
研究生(外文):Yun-Chiang Hsu
論文名稱:以正交光學入射方法提升光導耦合效率之研究
論文名稱(外文):The study of orthogonal incidence method for efficient sunlight guiding system
指導教授:徐巍峰
口試委員:李金連謝美莉林晃巖林正峰
口試日期:2013-07-12
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:58
中文關鍵詞:自然光照明耦合效率樹支狀光耦合器
外文關鍵詞:Natural lightingCoupling EfficiencyTree-Structured Light Guiding System
相關次數:
  • 被引用被引用:1
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自然能源隨著環保議題持續加溫,加上全球能源持續短缺的現況下,導入更環保、節能的自然光照明已成為現在最熱門的議題,也是世界的趨勢。而自然光照明系統的主要核心分為三個部分:集光、光引導、光照明。
受惠於太陽能與LED照明的蓬勃發展,許多學者在集光及光照明部分已相當深入的研究,且也有不錯的成果。例如在集光部分有許多Fresnel lens及CPC還有反射式集光等多方面研究,而在照明系統更有許多陣列式鏡頭以及自由取面等特殊需求的照明光學系統,僅有少數人對傳輸光導有更深入的研究,而本論文中利用數值理論的Matlab計算以及LightTools模擬為輔的方法,來設計出高耦合效率的結構。
由於集光器的存在使得光源入射到光導中不再只是單軸的平行光入射,而需要考量各個角度的入射光源,所以本論文提出平行光及正交光源入射的全角度入射數值理論分析,並大幅提高運算的速率,Matlab運算效率為LightTools數十倍。
而在本文所提的非對稱耦合器,考量全方位的入射光源最佳耦合效率可以達到72%為現階段耦合器中效率最高的,且主軸效率可以達到82%。在光源不足需要多分支增加亮度時,我們提出非對稱式的樹支狀耦合結構可明顯的提高光亮度做為自然照明的應用。並可以針對分支入射光做特殊設計使得光源為正交入射,使得分支耦合效率可達100%,以達到最佳耦合效率。


The popularity of solar energy source has increased significantly due to the emphasis on world green energy initiatives. Coupled with the world-side energy shortage, no wonder daylighting system is a hot topic on all agendas to migrate to a more environmentally friendly and energy efficient life style. The sunlight collectors, light guides, and light exits that constitute passive daylighting system can be improved using advanced optics.
Most collectors designed for PV cells can also be used in day lighting systems. The concentrating collector, or concentrator, can be equipped with a sun-tracking system to increase the amount of incident sunlight. Sun collectors can be categorized by reflective collectors, CPC practical collectors, refractive collectors and other custom-designed collector.
In this thesis, the theory of the Matlab simulation calculations and supplemented LightTools approach to design a structure of high coupling efficiency. We present parallel and orthogonal light incident on asymmetric light guide wholly theoretical analysis and substantially increase the speed of simulation.
Consider the full range of the incident light source, the coupling efficiency can reach 72% of the present stage of the research the highest coupling efficiency, and the trunk efficiency can reach 82%. In low light when you need to increase the brightness multi-branch, we propose an asymmetric TLGS can significantly improve the brightness as natural lighting applications. It also can be made for special design makes the branch incident light is orthogonal to the incident, so that the coupling efficiency can up to 100%.


目 錄

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 論文架構 5
第二章 自然光照明系統文獻探討 6
2.1太陽光集光器 6
2.1.1 反射聚焦式集光器 7
2.1.2 複合拋物面式集光器 7
2.1.2 折射式聚焦集光器 8
2.1.2 其他樣式 9
2.2光導系統 9
2.2.1 自然採光裝置 10
2.2.2 光傳輸管 10
2.2.3 光纖及光纖束 11
2.2.4 Prismex 面板耦合器 12
2.2.5 多對一與鋸齒形和橢圓形的表面組成的稜鏡陣列的
耦合器 12
2.2.6 步階式耦合器 13
2.2.7 Y型非對稱式耦合器 14
2.3 光輸出器 15
2.4 結論 16
第三章 光耦合器傳輸之效率理論 17
3.1光傳播基本理論 19
3.1.1 光的直線傳播 19
3.1.2 光的反射定律 21
3.1.3 光的折射定律 22
3.1.4 全反射 22
3.2光線在平行光導耦合平面上傳播 (?? = 0) 24
3.3光線在垂直光導耦合平面上傳播 (?? = 0) 26
3.4樹狀光導系統 (TLGS) 27
第四章 模擬結果跟耦合效率分析 31
4.1非對稱式耦合器的截止角度 31
4.2耦合效率及模擬結果 34
4.3分支光導管之正交入射 43
4.4全角度的入射分析 44
第五章 結論 48
參考文獻 51


1.羅丞曜,圖解太陽能應用技術,日本:世茂出版社,2009,第1- 14
頁。
2.羅運俊,何梓年,王長貴,太陽能發電技術與應用,北京:新文京開
發出版股份有限公司,2007,第1- 20頁。
3.任新兵,太陽能光伏發電工程技術任新兵,北京:化學工業出版社,
2011,第1- 30頁。
4.柯志昇,詹文男,綠色能源當道-全球太陽能電池市場與產業發展趨勢分析,台北:財團法人資訊工業策進會 資訊市場情報中心,2008,第5- 50頁
5.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor hetero junctions,” Science 270, 1995, pp. 1995, pp. 1789-1791.
6.A. J. Medford, M. R. Lilliedal, M. M. Jergensen, D. Aaro, H. Pakalski, J. Fyenbo, and F. C. Krebs, “Grid-connected polymer panels: initial considerations of cost, lifetime, and practicality,” Opt. Express 18, 2010, A272-A285.
7.G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nature Photonics 6, 2012, pp. 153-161.
8.A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285, 1999, pp. 692-698.
9.M. A. Green, “Thin-film solar cells: Review of materials, technologies and commercial status,” J. Mater. Sci.: Mater. Electron. 18, 2007, S15-S19.
10.G. Sun, F. Chang, and R. A. Sorel, “High efficiency thin-film crystalline Si/Ge tandem solar cell,” Opt. Express 18, 2010, pp. 3746-3753.
11.M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovol.: Res. Appl. 20, 2012, pp. 12-20.
12.I. Anton, D. Silva, G. Sala, A.W. Bett, G. Siefer, I. Luque-Heredia, and T. Trebst, “The PV-FIBRE Concentrator: A System for Indoor Operation of 1000X MJ Solar Cells,” Progress in Photovoltaics: Research and Applications, Appl. 2007, 15, pp. 431–447.
13.G. Zubi, J. L. Bernal-Agustı’n, G. V. Fracastoro, “High concentration photovoltaic systems applying III–V cellsl, ” Renewable and Sustainable Energy Reviews 13, 2009, pp. 2645–2652.
14.J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1998, pp.1991–1993.
15.M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 2004, pp. 857–863.
16.F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 1997, pp. 15–24.
17.I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt.16, 2008, pp. 235–239.
18.A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger,“Titanium suboxide as an optical spacer in polymer solar cells,” Appl. Phys. Lett. 95, 2009, 013302.
19.D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 2009, pp. 1377–1382.
20.S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim,“Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 2008, pp. 3956–3963.
21.M. Kischkoweit-Lopin, “An overview of daylighting systems,” Solar Energy 73, 2002, pp. 77-82.
22.C.-H. Tsuei, W.-S. Sun, and C.-C. Kuo, “Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting,” Opt. Express 18, 2010, A640-A653.
23.L. M. Fraas, W. R. Pyle, and P. R. Ryason, “Concentrated and piped sunlight for indoor illumination,” Appl. Opt. 22, 1983, pp. 578-582.
24.A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Solar Energy 79, 2005, pp. 56-64.
25.T. Nakamura, “Optical waveguide system for solar power applications in space,” Proc. SPIE 7423, 2009, 74230C.
26.F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 2006, 63380O.
27.D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar fiber-optic mini-dish concentrators: first experimental results and field experience,” Solar Energy 72, 2002, pp. 459-471.
28.A. Rosemann and H. Kaase, “Lightpipe applications for daylighting systems,” Solar Energy 78, 2005, pp. 772-780.
29.M.-C. Chien, Y. L. Tung, and C.-H. Tien, “Ultracompact backlight-reversed concentration optics,” Appl. Opt. 48, 2009, pp. 4142-4148.
30.J.-L. Scartezzini and G. Courret, “Experimental performance of daylighting systems based on non-imaging optics,” Proc. SPIE 5185, 2004, pp. 35-48.
31.V. R. M. Lo Verso, A. Pellegrino, and V. Serra, “Light transmission efficiency of daylight guidance systems: an assessment approach based on simulations and measurements in a sun/sky simulator,” Solar Energy 85, 2011, pp. 2789-2801.
32.A. J.-W. Whang, Y.-Y. Chen, S.-H. Yang, P.-H. Pan, K.-H. Chou, Y.-C. Lee, Z.-Y. Lee, C.-A. Chen, and C.-N. Chen, “Natural light illumination system,” Appl. Opt. 49, 2010, pp. 6789-6801.
33.O. Zik, J. Karni, and A. Kribus, “The TROF (tower reflector with optical fibers): a new degree of freedom for solar energy systems,” Solar Energy 67, 1999, pp. 13-22.
34.D. D. Earl and J. D. Muhs, ”Preliminary results on luminaire designs for hybrid solar lighting systems,” Solar Energy: The Power to Choose, 2001, pp. 21-25.
35.D. D. Earl and L. C. Maxey, “Alignment of an inexpensive paraboloidal concentrator for hybrid solar lighting applications,” SPIE Proc., vol. 5185, 2004, 67-77.
36.A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Solar Energy, vol. 79, 2005, pp. 56-64.
37.L. C. Maxey, and D. D. Earl, “Luminaire development for hybrid solar lighting applications,” SPIE Proc., vol. 5185, 2004, pp. 49-55.
38.D. Beshears, D. Earl, J. Muhs, C. Maxey, G. Capps, S. Stellern, D. Bayless, and S. Switzer, “First generation hybrid solar lighting collector system development and operating experience,” SPIE Proc., vol. 5185, 2004, pp. 56-66.
39.IEA International Energy Agency, “Daylight in buildings, asource book on daylighting and systems and components,” Report of IEA SHC Task 21 (International Energy Agency, 2000).
40.H. Hocheng, T. Huang, T. Chou, and W. Yang, “Microstructural fabrication and design of sunlight guide panels of inorganicorganic hybrid material,” Energ. Buildings 43, 2011, pp. 1011–1019.
41.J. D. Muhs, “Design and Analysis of Hybrid Solar Lighting and Full-Spectrum Solar Energy Systems, ” Solar 2000, July 16-21, 2000, American Solar Energy Society
42.K. L. Martin, “An overview of daylighting systems,” Sol. Energy Mater. 73, 2002, pp. 77–82.
43.S. H. Yang, Y. Y. Chen, and A. J. W. Whang, “Using prismatic structure and brightness enhancement film to design cascadable unit of static solar concentrator in natural light guiding system,” Proc. SPIE 7423, 2009, 74230J.
44.沈易達,用於日光傳輸之高傳輸效率光導耦合器的研究與設計,博士學位論文,國立臺北科技大學光電工程系,台北,2013。
45.J. J. Wiczer, “Optical fiber sensor for tracking line-focus solar collectors,” Applied Optics, vol. 21, 1982, pp. 2703-2707.
46.W. G. Steward and F. Kreith, “Stationary concentrating reflector cum tracking absorber solar energy collector: optical design characteristics,” Applied Optics, vol. 14, 1975, pp.1509-1512.
47.G. Angelino and C. M. Invernizzi, “Carbon dioxide power cycles using liquid natural gas as heat sink,” Applied Thermal Engineering,vol. 29, 2009, pp. 2935-2941.
48.G. Marsh, “Power stations: can solar power join the big hitters?” Renewable Energy Focus, vol. 40, 2009, pp. 50-58.
49.B. O. Seraphin, “Heat transfer characteristics of a linear solar collector,” Applied Optics, vol. 12, 1973, pp. 349-354.
50.C. K. Hsieh, “Theemal analysis of CPC collectors,” Solar Energy, vol. 27, 1981, pp. 19-29.
51.M. J. Carvalho, and M. Collares-Pereira, “Truncation of CPC solar collectors and its effect on energy collection,” Solar Energy, vol. 35, 1985, pp. 393-399.
52.D. E. Williamson, “Cone channel condenser optics,” J. Opt. Soc. Am. 42, 1952, pp. 712-715
53.R. Tchinda and N. Ngos, “A theoretical evaluation of the thermal performance of CPC with flat one-sided absorber,” International Communications in Heat and Mass Transfer, vol. 33, 2006, pp. 709-718
54.S. Bowden, S. R. Wenham, M.R. Dickinson, and M. A. Green, “High efficiency photovoltaic roof tiles with static concentrators,” Conference Record of the IEEEP hotovoltaic Specialists Conference,vol. 1, 1994, pp. 774-777.
55.J. S. Lin, W. C. Huang, H. C. Hsu, M. W. Chang, and C. P. Liu, “Astudyfor the special Fresnel lens for high efficiency solar concentrators,” SPIE Proc.,vol. 5942, 2005, 59420X.
56.M. Mouzouris and M. J. Brooks, “Nonimaging solar thermal collector for high temperature terrestrial and space applications,”SPIEProc., vol.7423, 2009, 74230F.
57.C. P. Liu, H. Y. Lin, and C. T. Hsiao, “Optical design of a new combo solar concentrator,” SPIE Proc.,vol. 7423, 2009, 74230X.
58.Y.T. Hung and G.D. Su, “Cylindrically symmetric fresnel lens for high concentration photovoltaics,” SPIE Proc.,vol. 7423, 2009, 74230W.
59.J. E. Ludman, J. Riccononi, I. V. Semenoca, N. O. Reingand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martin, “The optimization of a holographic system for solar power generation,” Solar Energy, vol. 21, 1997,
pp. 1-9.
60.M.Lando, J. Kagan, B. Linyekin, L. Sverdalov, G. Pecheny,andY. Achiam, “An astigmatic corrected target-aligned solar concentrator,” Optics Communications, vol. 1800, 2000, pp. 127-132.
61.K. Yoshioka, K. Koizumi, and T. Saitoh,”Simulation and fabrication of flat-plate concentrator modules,” Solar Energy Materials 和 Solar Cells, vol. 75, 2003, pp. 373-380.
62.D. G. Jenkins, “High-uniformity solar concentrators for photovoltaic systems,” SPIE Proc., vol. 4446, 2002, pp. 80-87.
63.C. Sierra and A. J. Vazwuze, “High solar energy concentration with a fresnel lens,” Journal of Materials Science, vol. 40, 2005, pp. 1339-1343.
64.J. L. Alvarez, J. Cabrera, V. Diaz, C. Matros, N. Montoya, and J. Alonso, “Industrialization of 1000X concentration photovoltaic modules,” SPIE Proc., vol. 6197, 2006, 61970I.
65.D. J. Aiken, M. A. Stan, S. P. Endicter, G. Girard, and P. R. Sharps, “A loss analysis for a 28% efficient 520X concentrator module,” Conf. record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, vol. 1, 2006, pp. 686-689.
66.C. F. Chen, C. H. Lin, and H. T. Jan, “A solar concentrator with two reflection mirrors designed by using a ray tracing method,” Optik Optics, vol. 121, 2010, pp. 1042-1051
67.W.-F. Hsu, Y.-T. Shen, and I-L. Chu, “Asymmetric and symmetric light couplers of daylighting systems for direct indoor lighting,” J. Opt. 14, 2012, 125703
68.A. J.-W. Whang, C.-C. Wang, and Y.-Y. Chen, “Design of cascadable optical unit to compress light for light transmission used for indoor illumination,” Renewable Energy 34, 2009, pp. 2280-2295.


69.A. J.-W. Whang, P.-C. Li, Y.-Y. Chen, and S.-L. Hsieh, “Guiding light from LED array via tapered light pipe for illumination systems design,” J. Display Technolog. 5, 2009, pp. 104-108.
70.耿繼業,何建娃,幾何光學,台灣:全華圖書股份有限公司,2010,第二章2-1~2-28。
71.陳木星,陳杰閔,卓達雄,陳賢堂,孫涵瑛,葉上民,黃宣瑜,幾何光學,台灣:新文京開發出版股份有限公司,2010,第1-18頁。
72.Charles A. DiMarzio, “OPTICS for Engineers,” New York : Taylor & Francis Group, 2012, pp. 35-50.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top