跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱恆志
研究生(外文):Heng-Chin Chu
論文名稱:應用於室內停車場之嵌入式車牌偵測與辨識
論文名稱(外文):Application of Embedded License Plate Detection and Recognition for Parking Garages
指導教授:陳文輝陳文輝引用關係
口試委員:曾傳蘆范丙林楊文治
口試日期:2012-06-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:58
中文關鍵詞:嵌入式系統車牌辨識傾斜校正
外文關鍵詞:Embedded systemLicense plate recognitionTilt correction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
交通運輸對於國家而言是一個相當重要的議題,隨著民眾因為便利性的需求,使得車輛數量日益漸增,在如此龐大的數量之下,所衍伸出來的將是該如何有效處理車輛進出管制、停車收費等問題,自動化車牌辨識能夠使這些問題更有效率的解決。以電腦作為平台所開發的車牌辨識系統,其體積與耗電量大,對於需長時間執行的系統而言相當不利,若將系統移植到嵌入式平台中實現將能改善此缺點,因此本研究選用德州儀器DM6437 EVM作為開發平台,並搭配攝影機與LCD顯示器完成一套即時車牌辨識系統。一般來說,車牌影像的取得是透過固定架設於停車場進出口上方或兩旁的攝影機所取得的,由於車輛停靠時距離攝影機的位置與角度皆不固定,因此所擷取到的車牌影像將有傾斜角度產生。本文使用霍夫轉換作為偵測傾斜角度主要方法,傾斜校正後,透過字元標籤化進行字元分割,將分割後之字元利用階層式字元辨識系統進行結果判斷。為驗證系統之可行性,本論文以停車場之車輛進行測試,結果顯示傾斜校正成功率為88.89%,整體車牌辨識率達81.63%。

Transportation is an important topical subject to a country. Under the public demand for convenience, the number of vehicles has continued to increase, which has led to the problems concerning the effective management of vehicle access control and parking fee collection. The automatic license plate recognition technology can solve these problems efficiently. However, the computer-based license plate recognition system has large volume and is power-consuming, thus, is disadvantageous for long-term operation. If the system can be operated on an embedded platform, the problems can thus be solved. Therefore, this study used Texas Instrument DM6437 EVM as the development platform, as well as cameras and LCD display to complete a real-time license plate recognition system. The license plate images are first captured by the cameras installed over or on the side of the parking garage entrance. As the distance and angle between the parking vehicles and the cameras are variable, the images may have angle of tilts. Hough transform is used to detect the inclination. After tilt correction, the character labeling is performed for character segmentation, and the segmented characters are put into the hierarchical character recognition system to identify the results. In order to validate the system feasibility, this study conducted experiments on the vehicles in the parking garages, and proved that the success rate of tilt correction is 88.89% and the overall recognition rate is 81.63%.

中文摘要i
英文摘要ii
誌謝iii
目錄v
表目錄vii
圖目錄viii
第一章緒論1
1.1研究背景1
1.2研究動機與目的2
1.3文獻回顧3
1.4論文架構5
1.5論文貢獻5
第二章車牌定位6
2.1色彩空間轉換6
2.2直方圖等化7
2.3邊緣檢測9
2.4雜訊濾除10
2.5形態學11
2.5.1膨脹11
2.5.2侵蝕12
2.5.3閉合13
2.6連通成分標示法14
2.7車牌區域判斷15
第三章車牌傾斜校正與辨識16
3.1霍夫轉換16
3.2近鄰旋轉法18
3.3Otsu二值化18
3.4投影法 20
3.5字元影像標籤化與分割21
3.6字元正規化21
3.7階層式字元辨識22
3.7.1樣板比對法23
3.7.2相似字元判斷23
第四章嵌入式系統架構25
4.1Code Composer Studio整合式開發環境25
4.1.1IQmath函式庫27
4.1.2網路開發套件28
4.1.3燒錄至評估板30
4.2數位訊號處理器31
4.2.1TMS320DM6437評估板32
4.2.2增強式直接記憶體存取控制器34
4.2.3 視訊處理子系統35
第五章 實驗結果與討論37
5.1系統架構37
5.1.1演算法流程37
5.1.2硬體架構流程39
5.2環境架設44
5.3車牌定位結果與討論46
5.4車牌傾斜校正結果與討論48
5.5字元分割與辨識結果與討論50
第六章結論與未來展望53
6.1結論53
6.2未來工作與展望53
參考文獻55


[1]中華民國交通部統計資料,網址:http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100,存取日期:2013.2.9
[2]Z. Qin, S. Shi, J. Xu, and H. Fu, “Method of license plate location based on corner feature,” Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, vol. 2, 2006, pp. 8645-8649.
[3] S. H. Park, K. I. Kim, K. Jung, and H. J. Kim, “Locating car license plates using neural networks,” Electronics Letters, vol. 35, no. 17, 1999, pp. 1475-1477.
[4] F. Martin, M. Garcia, and J. L. Alba, “New methods for automatic reading of VLP''s,” Proceedings International Conference Association of Science and Technology for Development, 2002.
[5] B. Hongliang and L. Changping, “A hybrid license plate extraction method based on edge statistics and morphology,” Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, United Kingdom, vol. 2, 2004, pp. 831-834.
[6] P. Comelli, P. Ferragina, M. N. Granieri, and F. Stabile, “Optical recognition of motor vehicle license plates,” IEEE Transactions on Vehicular Technology, vol. 44, no. 4, 1995, pp. 790-799.
[7] J. Kong, X. Liu, Y. Lu, and X. Zhou, “A novel license plate localization method based on textural feature analysis,” Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, Athens, Greece, 2005, pp. 275-279.
[8] M. G. He, A. L. Harvey, and T. Vinay, “Hough transform in car number plate skew detection,” International Symposium on Signal Processing and its Applications, Gold Coast, Australia, vol. 2, 1996, pp. 593-596.
[9] Y. Cheng, J. Lu, and T. Yahagi, “Car license plate recognition based on the combination of principal components analysis and radial basis function networks,” International Conference on Signal Processing, vol. 2, 2004, pp.1455-1458.
[10] A. W. G. C. D. Wijetunge and D. A. A. C. Ratnaweera, “Real-time recognition of license plates of moving vehicles in Sri Lanka,” IEEE International Conference on Industrial and Information Systems, Sri Lanka, 2011, pp.82-87.
[11] N. D. Modi, C. K. Modi, C. N. Paunwala, and S. Patnaik, “Skew correction for vehicle license plates using principal component of harris corner feature,” International Conference on Communication Systems and Network Technologies, Jammu, India, 2011, pp. 339-343.
[12] H. A. Hegt, R. J. D. L. Haye, and N. A. Khan, “A high performance license plate recognition system,” IEEE International Conference on System, Man and Cybernetics, California, USA, vol. 5, 1998, pp. 4357-4362.
[13] C. Wu, L. C. On, C. H. Weng, T. S. Kuan, and K. Ng, “A Macao license plate recognition system,” Proceedings of the Fourth International Conference on Machine Learning and Cybernetic, Guangzhou, vol. 7, 2005, pp. 4506-4510.
[14] I. Benou and R. Yochanan, “A license plate detection and character segmentation method under difficult conditions,” IEEE Convention of Electrical and Electronics Engineers in Israel, Eilat, 2012, pp. 1-5.
[15] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems Man and Cybernetics, vol. 9, no. 1, 1979, pp. 62-66.
[16] C. Coetzee, C. Botha, and D. Weber, “PC based number plate recognition system,” IEEE International Symposium on Industrial Electronics, Pretoria, South Africa, vol. 2, 1998, pp. 605-610.
[17] Y. P. Huang, S. Y. Lai, and W. P. Chuang, “A template-based model for license plate recognition,” Proceedings of the 2004 IEEE International Conference on Networking, Sensing and Control, Taipei, Taiwan, vol. 2, 2004, pp. 737-742.
[18] K. Yamaguchi, Y. Nagaya, K. Ueda, H. Nemoto, and M. Nakagawa “A method for identifying specific vehicles using template matching,” IEEE International Conference on Intelligent Transportation Systems, Tokyo, Japan, 1999, pp. 8-13.
[19] S. L. Chang, L. S. Chen, Y. C. Chung, and S. W. Chen, ”Automatic license plate recognition,” IEEE Transactions on Intelligent Transportation Systems, vol. 5, no. 1, 2004, pp. 42-53.
[20] Texas Instruments Inc., TMS320C6000 Optimizing Compiler v 7.3 User''s Guide, 2011.
[21] Texas Instruments Inc., TMS320C64x+ IQmath Library User''s Guide, 2008.
[22] Texas Instruments Inc., TMS320C6000 Network Developer’s Kit (NDK) Software User''s Guide, 2007.
[23] Texas Instruments Inc., DM643x Flashing the DM6437 EVM NOR Device for Booting in NOR FastBoot AIS mode.
[24] 龍飛,基於DM6437的網絡視頻平台的研究與實現,碩士論文,大連海事大學,大連,2009。
[25] Texas Instruments Inc., TMS320DM6437 Evaluation Module Technical Reference, 2006.
[26] Texas Instruments Inc., TMS320DM6437 Digital Media Processor, 2008.
[27] Texas Instruments Inc., TMS320DM643x DMP Enhanced Direct Memory Access (EDMA3) Controller User''s Guide, 2008.
[28] Texas Instruments Inc., TMS320DM643x DMP Video Processing Front End (VPFE) User''s Guide, 2010.
[29] Texas Instruments Inc., TMS320DM643x DMP Peripherals Overview Reference Guide, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top