跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 12:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪頎祥
研究生(外文):Chi-hsiang Hung
論文名稱:低溫燒結型奈米二氧化鈦漿料於染料敏化太陽能電池光陽極的製備與應用
論文名稱(外文):Preparation of low temperature sintering TiO2 paste and its application on dye-sensitized solar cells
指導教授:蘇昭瑾
指導教授(外文):Chaochin Su
口試委員:尹大中周德綱李文仁
口試委員(外文):Wen-Ren Li
口試日期:2012-10-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:102
中文關鍵詞:二氧化鈦低溫製程網版印刷染料敏化太陽能電池
外文關鍵詞:Titanium DioxideLow Lemperature SinteringScreen printingSprayingDye-sensitized Solar Cell
相關次數:
  • 被引用被引用:4
  • 點閱點閱:640
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們試圖製備一具有良好具有低溫燒結性的二氧化鈦漿料。此二氧化鈦漿料可用於製備染料敏化太陽能電池光陽極。這裡的「低溫燒結」係指在低於150攝氏溫度下進行燒結,在這個溫度下,大多數用於染料敏化太陽能電池的軟性基材(例如ITO-PET)可以承受。
首先,利用已知配方的二氧化鈦漿料來進行剖析,建立了一種可以有效分析二氧化鈦漿料組成的方法。並用藉由這種方法,對市售的低溫燒結型二氧化鈦漿料進行分析。接著,從所獲得的分析資料與從文獻回顧提出的概念中,我們選擇了被稱為「化學燒結法」的製備方式,分別製備了兩種低溫燒結型二氧化鈦漿料:一種是噴塗型漿料,而另一種是網印型漿料。結果所獲得的光電轉換效率,分別為1.231 %與 2.163 % (於FTO玻璃)。


In this study, a new process method has been developed to prepare a low-temperature sintering titanium dioxide paste to make photoelectrodes for the application of dye sensitized solar cells (DSSCs). Herein, the definition of “low-temperature sintering” is referred to the sintering temperature below 150 oC.The low temperature samples can be used for the flexible substrates (e.g. ITO-PET) in DSSCs, which can withstand within this temeperature range. First, a useful approach for analyzing the home-made TiO2 paste has been established in order to get the basic information of commercial low-temperature TiO2 paste. The “chemical sintering” method was chosen from literatures review to prepare a low-temperature sintering titanium dioxide paste and it has been utilized by two types of coating method such as spray-coating and screen-printing processes respectively. The obtained optimum efficiency in DSSCs for spray-coating and screen printing method based photoelectrodes were 1.231 % and 2.163 %, respectively.

中文摘要 I
Abstract II
誌謝 IV
目錄 VI
表目錄 IX
圖目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧與理論基礎 3
2.1 染料敏化太陽能電池介紹 3
2.1.1 從矽基太陽能電池到染料敏化太陽能電池 3
2.1.2 染料敏化太陽能電池的起源 5
2.1.3 染料敏化太陽能電池近年來的發展 8
2.1.4 染料敏化太陽能電池的挑戰 9
2.2 染料敏化太陽能電池的工作機理 11
2.2.1 染料敏化太陽能電池的元件結構 11
2.2.2 染料敏化太陽能電池光陽極材料 14
2.2.3 染料敏化太陽能電池的染料光敏化劑 19
2.2.4 染料敏化太陽能電池的電解液與對電極 23
2.3 軟性基板染料敏化太陽能電池 24
2.3.1 適用於染敏電池之軟性基板 24
2.3.2 軟性染敏電池光陽極之製備方法 25
2.4 專利回顧 42
2.5 文獻與專利回顧小結 43
第三章 實驗部分 44
3.1 本研究中所使用的藥品清單 44
3.2 本研究所使用的儀器清單與儀器操作原理 46
3.2.1 X光繞射分析儀(XRD) 47
3.2.2 掃描式電子顯微鏡(SEM) 49
3.2.3 穿透式電子顯微鏡(TEM) 50
3.2.4 BET比表面積測定儀(BET) 52
3.3 染料敏化太陽能電池元件的製備 53
3.3.1 導電玻璃的清洗 53
3.3.2 二氧化鈦光陽極的製備 54
3.3.3 相對電極的製備 57
3.3.4 電解液的配製 57
3.3.5 染料敏化太陽能電池的組裝與分析 58
3.3.6 光電轉換效率(I-V) 59
第四章 剖析商品化低溫燒結二氧化鈦漿料 61
4.1 從高溫燒結型漿料配方來看低溫漿料的配方設計 61
4.2 粉末型高溫燒結油性二氧化鈦漿料的剖析 65
4.2.1 水熱法製備銳鈦礦相二氧化鈦與其性質 65
4.2.2 粉末型高溫燒結油性二氧化鈦漿料的製備 68
4.2.3 粉末型高溫燒結油性二氧化鈦漿料的系統剖析 70
4.2.4 小結 71
4.3 剖析Solaronix公司Ti Nanoxide D-L低溫漿料 72
4.3.1 Ti-Nanoxide D-L的官方規格說明 72
4.3.2 Ti-Nanoxide D-L的剖析 73
4.3.3 Ti-Nanoxide D-L膜層分析與光電效率分析 77
4.4 第四章小結 79
第五章 噴塗型低溫燒結型二氧化鈦漿料 80
5.1 噴塗型低溫燒結二氧化鈦漿料的製備 81
5.1.1 二氧化鈦水分散液製備 81
5.1.2 二氧化鈦溶膠的製備 83
5.1.3 噴塗型低溫燒結二氧化鈦漿料的製備 84
5.2 噴塗型低溫燒結二氧化鈦漿料的性質測試 85
5.2.1 TiO2 sol的噴塗低溫燒結漿料的性質分析 85
5.2.2 P25, ST21與a-TiO2噴塗低溫燒結漿料的性質分析 87
5.3 第五章小結 91
第六章 網印型低溫燒結二氧化鈦漿料 92
6.1 LPA101-01製備 93
6.2 LPA101-01光電轉換效率分析 94
6.3 小結 95
第七章 結論 96
參考文獻 97



[1] B. E. Hardin, H. J. Snaith, M. D. McGehee, “The renaissance of dye-sensitized solar cells”, Nature Photonics 6 (2012) 162.
[2] B. O''Regan, M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353 (1991) 737.
[3] L. M. Peter, “The Gratzel cell: Where next?”, Journal of Physical Chemistry Letters 2 (2011) 1861.
[4] M. Gratzel, “Photoelectrochemical cells”, Nature 414 (2001) 338.
[5] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 39)”, Prog. Photovoltaics 20 (2012) 12.
[6] N. Koide, R. Yamanaka, H. Katayama. (Boston, MA, 2010), vol. 1211, pp. 121-127.
[7] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency”, Science 334 (2011) 629.
[8] R. D. McConnell, “Assessment of the dye-sensitized solar cell”, Renew. Sust. Energ. Rev. 6 (2002) 273.
[9] Dyesol公司網頁: http://www.dyesol.com/download/Catalogue.pdf.
[10] S. Namba, Y. Hishiki, “Color sensitization of zinc oxide with cyanine dyes”, J. Phys. Chem. 69 (1965) 774.
[11] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett. 48 (1986) 183.
[12] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, “Dye-sensitized solar cells”, Chem. Rev. 110 (2010) 6595.
[13] M. Gratzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorg. Chem. 44 (2005) 6841.
[14] M. K. Nazeeruddin, E. Baranoff, M. Gratzel, “Dye-sensitized solar cells: A brief overview”, Sol. Energy 85 (2011) 1172.
[15] M. Gratzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobiol. A-Chem. 164 (2004) 3.
[16] D. P. MacWan, P. N. Dave, S. Chaturvedi, “A review on nano-TiO2 sol-gel type syntheses and its applications”, J. Mater. Sci. 46 (2011) 3669.
[17] S. D. Mo, W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite”, Physical Review B 51 (1995) 13023.
[18] C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications”, J. Am. Ceram. Soc. 80 (1997) 3157.
[19] D. Reyes-Coronado, G. Rodriguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. De Coss, G. Oskam, “Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile”, Nanotechnology 19 (2008).
[20] C. Magne, S. Cassaignon, G. Lancel, T. Pauporte, “Brookite TiO2 nanoparticle films for dye-sensitized solar cells”, ChemPhysChem 12 (2011) 2461.
[21] N. G. Park, J. Van De Lagemaat, A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells”, J. Phys. Chem. B 104 (2000) 8989.
[22] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, M. Gratzel, “Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells”, Prog. Photovoltaics 15 (2007) 603.
[23] M. Gratzel, “Recent advances in sensitized mesoscopic solar cells”, Acc. Chem. Res. 42 (2009) 1788.
[24] B. O''Regan, M. Graetzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films”, Nature (London) 353 (1991) 737.
[25] F. T. Kong, S. Y. Dai, K. J. Wang, “Review of recent progress in dye-sensitized solar cells”, Advances in OptoElectronics 2007 (2007).
[26] A. Hagfeld, M. Gratzel, “Light-induced redox reactions in nanocrystalline systems”, Chem. Rev. 95 (1995) 49.
[27] C. H. Tsai, S. Y. Hsu, C. Y. Lu, Y. T. Tsai, T. W. Huang, Y. F. Chen, Y. H. Jhang, C. C. Wu, “Influences of textures in Pt counter electrode on characteristics of dye-sensitized solar cells”, Org. Electron. 13 (2012) 199.
[28] M. Toivola, J. Halme, K. Miettunen, K. Aitola, P. D. Lund, “Nanostructured dye solar cells on flexible substrates-Review”, Int. J. Energy Res. 33 (2009) 1145.
[29] 翁啟航, 太陽能電池 - 原理、元件、材料、製程與檢測技術, 東華書局 (2010) 402.
[30] Y. Li, W. Lee, D. K. Lee, K. Kim, N. G. Park, M. J. Ko, “Pure anatase TiO2 "nanoglue": An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells”, Appl. Phys. Lett. 98 (2011) 103301.
[31] P. Zhang, C. Wu, Y. Han, T. Jin, B. Chi, J. Pu, L. Jian, “Low-Temperature Preparation of Hierarchical Structure TiO2 for Flexible Dye-Sensitized Solar Cell”, J. Am. Ceram. Soc. (2011).
[32] Y. Kijitori, M. Ikegami, T. Miyasaka, “Highly efficient plastic dye-sensitized photoelectrodes prepared by low-temperature binder-free coating of mesoscopic titania pastes”, Chem. Lett. 36 (2007) 190.
[33] C. Brinker, Sol-gel science, Sandia National Laboratories (1990) 172.
[34] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, S. Yanagida, “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells”, J. Phys. Chem. B 106 (2002) 10004.
[35] F. Pichot, J. R. Pitts, B. A. Gregg, “Low-temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells”, Langmuir 16 (2000) 5626 (Jun 27).
[36] N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, Y. J. Shin, “Chemical sintering of nanoparticles: A methodology for low-temperature fabrication of dye-sensitized TiO2 films”, Adv. Mater. 17 (2005) 2349.
[37] T. Miyasaka, M. Ikegami, Y. Kijitori, “Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania”, J. Electrochem. Soc. 154 (2007) A455.
[38] X. Li, H. Lin, J. Li, N. Wang, C. Lin, L. Zhang, “Chemical sintering of graded TiO2 film at low-temperature for flexible dye-sensitized solar cells”, J. Photochem. Photobiol. A-Chem. 195 (2008) 247.
[39] D. Zhang, H. Hu, L. Li, D. Shi, “Low-temperature preparation of amorphous-shell/nanocrystalline-core nanostructured TiO2 electrodes for flexible dye-sensitized solar cells”, J. Nanomater. 2008 (2008).
[40] K. Kim, G. W. Lee, K. Yoo, D. Y. Kim, J. K. Kim, N. G. Park, “Improvement of electron transport by low-temperature chemically assisted sintering in dye-sensitized solar cell”, J. Photochem. Photobiol. A-Chem. 204 (2009) 144.
[41] K. M. Lee, S. J. Wu, C. Y. Chen, C. G. Wu, M. Ikegami, K. Miyoshi, T. Miyasaka, K. C. Ho, “Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer”, J. Mater. Chem. 19 (2009) 5009.
[42] K. Li, Y. Luo, Z. Yu, M. Deng, D. Li, Q. Meng, “Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells”, Electrochem. Commun. 11 (2009) 1346.
[43] 張陽, 曾慶慧, 只金芳, “過氧化鈦配合物(PTC)體系在柔性染料敏化太陽能電池中的應用”, 影像科學與光化學 27 (2009) 9.
[44] Q. Li, J. Wu, Z. Tang, Y. Xiao, M. Huang, J. Lin, “Application of poly(acrylic acid-g-gelatin)/polypyrrole gel electrolyte in flexible quasi-solid-state dye-sensitized solar cell”, Electrochim. Acta 55 (2010) 2777.
[45] L. Y. Lin, P. C. Nien, C. P. Lee, K. W. Tsai, M. H. Yeh, R. Vittal, K. C. Ho, “Low-temperature flexible photoanode and net-like Pt counter electrode for improving the performance of dye-sensitized solar cells”, J. Phys. Chem. C 114 (2010) 21808.
[46] H. C. Weerasinghe, G. V. Franks, J. D. Plessis, G. P. Simon, Y. B. Cheng, “Anomalous rheological behavior in chemically modified TiO2 colloidal pastes prepared for flexible dye-sensitized solar cells”, J. Mater. Chem. 20 (2010) 9954.
[47] H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, Y. B. Cheng, “Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells”, J. Photochem. Photobiol. A-Chem. 213 (2010) 30.
[48] W. H. Yen, C. C. Hsieh, C. Y. Hung, H. W. Wang, M. C. Tsui, “Flexible TiO2 working electrode for dye-sensitized solar cells”, J. Chin. Chem. Soc. 57 (2010) 1162.
[49] 王仁博, 胡志強, 梁俏, 周紅茹, 康姣, “柔性染料敏化太陽能電池TiO2涂層電極的制備及性能研究”, 大連工業大學學報 29 (2010) 201.
[50] K. Fan, T. Peng, J. Chen, K. Dai, “Effects of tetrabutoxytitanium on photoelectrochemical properties of plastic-based TiO2 film electrodes for flexible dye-sensitized solar cells”, J. Power Sources 196 (2011) 2939.
[51] L. Y. Lin, C. P. Lee, K. W. Tsai, M. H. Yeh, C. Y. Chen, R. Vittal, C. G. Wu, K. C. Ho, “Low-temperature flexible Ti/TiO2 photoanode for dye-sensitized solar cells with binder-free TiO2 paste”, Prog. Photovoltaics (2011).
[52] D. Zhang, T. Yoshida, H. Minoura, “Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface”, Adv. Mater. 15 (2003) 814.
[53] T. Oekermann, D. Zhang, T. Yoshida, H. Minoura, “Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization”, J. Phys. Chem. B 108 (2004) 2227.
[54] D. Zhang, T. Yoshida, K. Furuta, H. Minoura, “Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells”, J. Photochem. Photobiol. A-Chem. 164 (2004) 159.
[55] C. Li, Y. Lin, X. Li, Z. Wang, Y. Ma, X. Zhou, S. Feng, X. Xiao, “Nanocrystalline TiO2 thin film electrodes prepared by common pressure hydrothermal method at low temperature”, Chin. Sci. Bull. 50 (2005) 1449.
[56] C. Y. Li, X. P. Li, Y. T. Ma, Z. P. Wang, X. W. Zhou, Y. Lin, S. J. Feng, X. R. Xiao, “A novel nanocrystalline TiO2 thin film electrodes prepared at low temperature”, Chin. Chem. Lett. 16 (2005) 967.
[57] T. Miyasaka, Y. Kijitori, “Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers”, J. Electrochem. Soc. 151 (2004) A1767.
[58] J. H. Yum, S. S. Kim, D. Y. Kim, Y. E. Sung, “Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells”, J. Photochem. Photobiol. A-Chem. 173 (2005) 1.
[59] Y. W. Chung, H. S. Fang, J. H. Lee, C. J. Tsai, “Fabrication of flexible thin film with pattern structure and macroporous array consisting of nanoparticles by electrophoretic deposition”, Jpn. J. Appl. Phys. 49 (2010) 06GH111.
[60] H. C. Weerasinghe, P. M. Sirimanne, G. P. Simon, Y. B. Cheng, “Cold isostatic pressing technique for producing highly efficient flexible dye-sensitised solar cells on plastic substrates”, Prog. Photovoltaics (2011).
[61] H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist, A. Hagfeldt, “A New Method for Manufacturing Nanostructured Electrodes on Plastic Substrates”, Nano Lett. 1 (2001) 97.
[62] H. Lindstrom, A. Holmberg, E. Magnusson, L. Malmqvist, A. Hagfeldt, “A new method to make dye-sensitized nanocrystalline solar cells at room temperature”, J. Photochem. Photobiol. A-Chem. 145 (2001) 107.
[63] G. Boschloo, H. Lindstrom, E. Magnusson, A. Holmberg, A. Hagfeldt, “Optimization of dye-sensitized solar cells prepared by compression method”, J. Photochem. Photobiol. A-Chem. 148 (2002) 11.
[64] T. Yamaguchi, N. Tobe, D. Matsumoto, H. Arakawa, “Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes”, Chem. Commun. (2007) 4767.
[65] D. Gutierrez-Tauste, I. Zumeta, E. Vigil, M. A. Hernandez-Fenollosa, X. Domenech, J. A. Ayllon, “New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation”, J. Photochem. Photobiol. A-Chem. 175 (2005) 165.
[66] D. Zhang, T. Yoshida, T. Oekermann, K. Furuta, H. Minoura, “Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells”, Adv. Funct. Mater. 16 (2006) 1228.
[67] 張鳳, 陶杰, 董祥, “紫外處理低溫燒結柔性TiO2薄膜電極的性能研究”, 太陽能學報 30 (2009) 5.
[68] Q. Zeng, Y. Yu, L. Wu, B. Qi, J. Zhi, “Low-temperature fabrication of flexible TiO2 electrode for dye-sensitized solar cells”, Phys. Status Solidi A-Appl. Mat. 207 (2010) 2201.
[69] M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles, “Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers”, Nat. Mater. 4 (2005) 607.
[70] L. Yang, L. Wu, M. Wu, G. Xin, H. Lin, T. Ma, “High-efficiency flexible dye-sensitized solar cells fabricated by a novel friction-transfer technique”, Electrochem. Commun. 12 (2010) 1000.
[71] K. Chittibabu, "Low temperature interconnection of nanoparticles", US6858158, (2005), Konarka Technologies, Inc.
[72] 林紅, 趙曉冲, 李健保, "一種紙張型染料敏化太陽能電池光陽極及其製備方法", CN102082032A, (2010), 清華大學
[73] 紀雪梅, 李保民, 張希堂, "一種用於柔性染料敏化太陽能電池的柔性碳對電極及其製備方法", CN101894677A, (2010),
[74] 彭天佑, 范科, "一種基於導電塑料基底的染料敏化太陽能電池及其製備方法", (2010), 武漢大學
[75] S.-H. Chen, "Dye-sensitized solar cell using composite semiconductor material", (2010), Eternal Chemical Co., Ltd.
[76] J. Kacher, C. Landon, B. L. Adams, D. Fullwood, “Bragg''s Law diffraction simulations for electron backscatter diffraction analysis”, Ultramicroscopy 109 (2009) 1148.
[77] 許懿文,碩士論文, “混相二氧化鈦光陽極的製備與染料敏化太陽能電池的應用”, 國立臺北科技大學 (2009).
[78] 鄭傑中,碩士論文, “二氧化鈦奈米管陣列的製備與分析及染料敏化太陽能電池的應用”, 國立臺北科技大學 (2009).
[79] 謝宜芳,碩士論文,"溶膠法製備二氧化鈦與性質分析 -從水熱到煅燒;從奈米粒到奈米薄膜",國立臺北科技大學 (2006).
[80] 柳宜政,碩士論文,"二氧化鈦工作電極的製程改善與染料敏化太陽能電池的應用",國立臺北科技大學 (2010).
[81] J. Israelachvili, Intermolecular and Surface Forces, Academic Press, London (1991).




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊