(18.206.12.76) 您好!臺灣時間:2021/04/23 11:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高郁茹
研究生(外文):Yu-Ju Kao
論文名稱:利用高靈敏度奈米矽線場效應電晶體檢測腺嘌呤核甘三磷酸(ATP)
論文名稱(外文):Silicon-nanowire field-effect-transistors for high sensitive detection of Adenosine Triphosphate (ATP)
指導教授:蔡麗珠蔡麗珠引用關係
指導教授(外文):Li-Chu Tsai
口試委員:陳逸聰陳啟東
口試委員(外文):Yit-Tsong ChenChii-Dong Chen
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:47
中文關鍵詞:ATP合成酶脂質體奈米矽線場效應電晶體
外文關鍵詞:ATP synthaseliposomeSilicon nanowire field-effect-transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
 ATP合成酶(ATP synthase,Fo F1-ATPase)是一種跨膜性蛋白,由兩種不同功能的蛋白質組合而成,分別為Fo-ATPase與F1-ATPase。在特定的條件下,ATP合成酶會將ADP(Adenosine diphosphate)與磷酸根(phosphate)合成ATP(Adenosine triphosphate),並將氫離子打進膜內。現今ATP 合成酶仍被廣泛研究,但目前的研究主要是加上載體,如:螢光、肌動蛋白等大型分子間接檢測。我們提出以場效應電晶體量測系統利用氫離子濃度增加所產生的電流變化。在此系統中,不需另外加上載體即可即時檢測ATP合成酶與ATP作用的變化且靈敏度高,對於膜蛋白的研究可提供許多相關的機制與反應資訊,也是非常適合相關研究的研究平台。目前我們的實驗結果已經可以明顯看出氫離子通過Fo-ATPase進入細胞膜內的反應。 


ATP synthase is a composite membrane protein, which is a combination of two different functions of the protein, namely, Fo-ATPase and F1-ATPase. In the condition, ATP synthase will synthesis of ATP from ADP and phosphate, and pump protons to the extracellular. ATP synthase is widely studied, but mostly require addition of fluorescent, actin or other large molecules. We propose here a direct approach for measuring the reaction. In this system, the increased proton concentration can be detected using a Si-nanowire based field-effect-transistor. It provides a real-time, high sensitivity platform, which can also give additional information associated with the reaction mechanism. At present, our experimental results already show evidence of the protons pumped through the Fo-ATPase.

目 錄
摘 要 I
ABSTRACT II
致 謝 III
目 錄 V
圖 目 錄 VII
第一章 緒論 1
1-1 前言 1
1-2 場效應電晶體簡介 2
1-2.1奈米矽線場效應電晶體 3
1-2.2 奈米矽線場效應電晶體生物感測器 5
1-2.3 奈米矽線生物感測器的感測限制 9
1-3 ATP合成酶簡介 11
1-3.1 ATP合成酶結構與研究 12
1-3.2 F1-ATP合成酶研究 16
1-4 生物膜與微脂粒 18
第二章 實驗 20
2-1實驗藥品與設備 20
2-1.1藥品 20
2-1.2設備 21
2-2萃取ATP合成酶 22
2-2.1從菠菜取出葉綠體 22
2-2.2萃取類囊體膜蛋白 23
2-2.3以硫酸銨沉澱法取得初分的ATP合成酶 23
2-2.4利用蔗糖梯度離心法再純化ATP合成酶 24
2-3製作脂質體 24
2-4將ATP合成酶重組到脂質體 25
2-5微流道製作 25
2-6利用場效應電晶體測定ATP合成酶活性 26
2-7檢測F1-ATP合成酶 27
2-7.1 純化F1-ATP合成酶 27
2-7.2修飾奈米矽線 27
第三章 結果與討論 31
3-1 FOF1-ATP合成酶實驗結果 31
3-1.1 SDS- page結果 31
3-1.2 liposome吸附在晶片上的證明 32
3-1.3 電訊號量測結果 32
3-2 F1-ATP合成酶實驗結果 37
3-2.1 SDS- page結果 37
3-2.2 奈米矽線修飾證明 38
3-2.3 電訊號量測結果 39
第四章 結論 43
參考文獻 44


1.Chiesa, M., et al., Detection of the Early Stage of Recombinational DNA Repair by Silicon Nanowire Transistors. Nano Letters, 2012. 12(3): p. 1275-1281.
2.Zhang, G.J., et al., Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sensors and Actuators B-Chemical, 2010. 146(1): p. 138-144.
3.Shen, F.X., et al., Rapid Flu Diagnosis Using Silicon Nanowire Sensor. Nano Letters, 2012. 12(7): p. 3722-3730.
4.Cui, Y., et al., Doping and electrical transport in silicon nanowires. Journal of Physical Chemistry B, 2000. 104(22): p. 5213-5216.
5.Hahm, J. and C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters, 2004. 4(1): p. 51-54.
6.Zheng, G.F., et al., Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology, 2005. 23(10): p. 1294-1301.
7.Patolsky, F., et al., Electrical detection of single viruses. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(39): p. 14017-14022.
8.Patolsky, F., Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays (vol 313, pg 1100, 2006). Science, 2007. 317(5836): p. 320-320.
9.Stern, E., et al., Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature, 2007. 445(7127): p. 519-522.
10.Cui, Y., et al., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001. 293(5533): p. 1289-1292.
11.Martinez, J.A., et al., Highly Efficient Biocompatible Single Silicon Nanowire Electrodes with Functional Biological Pore Channels. Nano Letters, 2009. 9(3): p. 1121-1126.
12.Misra, N., et al., Bioelectronic silicon nanowire devices using functional membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(33): p. 13780-13784.
13.Huang, S.C.J., et al., Carbon Nanotube Transistor Controlled by a Biological Ion Pump Gate. Nano Letters, 2010. 10(5): p. 1812-1816.
14.Chu, C.J., et al., Improving nanowire sensing capability by electrical field alignment of surface probing molecules. Nano Lett, 2013. 13(6): p. 2564-2569.
15.Gao, A.R., et al., Enhanced Sensing of Nucleic Acids with Silicon Nanowire Field Effect Transistor Biosensors. Nano Letters, 2012. 12(10): p. 5262-5268.
16.Stern, E., et al., Importance of the debye screening length on nanowire field effect transistor sensors. Nano Letters, 2007. 7(11): p. 3405-3409.
17.Bottcher, B., L. Schwarz, and P. Graber, Direct indication for the existence of a double stalk in CF0F1. Journal of Molecular Biology, 1998. 281(5): p. 757-762.
18.Bottcher, B. and P. Graber, The structure of the H+-ATP synthase from chloroplasts and its subcomplexes as revealed by electron microscopy. Biochimica Et Biophysica Acta-Bioenergetics, 2000. 1458(2-3): p. 404-416.
19.Zimmermann, B., et al., Movements of the epsilon-subunit during catalysis and activation in single membrane-bound H+-ATP synthase. Embo Journal, 2005. 24(12): p. 2053-2063.
20.Ishmukhametov, R., et al., Direct observation of stepped proteolipid ring rotation in E. coli F0F1-ATP synthase. EMBO J, 2010. 29(23): p. 3911-3923.
21.Dong, H., et al., Assembly of F0F1-ATPase into solid state nanoporous membrane. Chemical Communications, 2011. 47(11): p. 3102-3104.
22.Yasuda, R., et al., F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degrees steps. Cell, 1998. 93(7): p. 1117-1124.
23.Wang, H. and G. Oster, Ratchets, power strokes, and molecular motors. Applied Physics a-Materials Science & Processing, 2002. 75(2): p. 315-323.
24.Nishizaka, T., et al., Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nature Structural & Molecular Biology, 2004. 11(2): p. 142-148.
25.Adachi, K., et al., Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell, 2007. 130(2): p. 309-321.
26.Uchihashi, T., et al., High-Speed Atomic Force Microscopy Reveals Rotary Catalysis of Rotorless F-1-ATPase. Science, 2011. 333(6043): p. 755-758.
27.Turina, P., D. Samoray, and P. Graber, H+-ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1-liposomes. Embo Journal, 2003. 22(3): p. 418-426.
28.Rigaud, J.L. and D. Levy, Reconstitution of membrane proteins into liposomes. Liposomes, Pt B, 2003. 372: p. 65-86.
29.Fischer, S. and P. Graber, Comparison of Delta pH- and Delta phi-driven ATP synthesis catalyzed by the H+-ATPases from Escherichia coli or chloroplasts reconstituted into liposomes. Febs Letters, 1999. 457(3): p. 327-332.
30.Maury, P., et al., Creating nanopatterns of his-tagged proteins on surfaces by nanoimprint lithography using specific NiNTA-Histidine interactions. Small, 2007. 3(9): p. 1584-1592.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔