[1]洪偉修, 世界上最薄的材料--石墨烯, 98康熹化學報報, 2009-11
[2]Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007)
[3]洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工技術,第49卷,第1期,第23-30頁(2002)[4]M. Gratzel, “Photoelectrochemical cells”, Nature 414 (2001) 338-344.
[5]黃建昇,結晶矽太陽電池發展近況,工業材料雜誌,203 (2003),150。[6]國家實驗研究院科技政策研究與資訊中心(Science & Technology Policy Research andInformation Center,STPI).
[7]M. Gratzel, “Photovoltaic and photoelectrochemical conversion of solar energy”,Phil. Trans. R. Soc. A 365 (2007) 993-1005.
[8]B. O’Regan, M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353 (1991) 737-740.
[9]X. Chen, S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties,modifications, and applications”, Chem. Rev. 107 (2007) 2891-2959.
[10]F. Hurd and R. Livingston, “The quantum yields of some dye-sensitized photooxidations” J. Phys. Chem. 44(1940)865-873.
[11]G. Oster, J. S. Bellin, R. W. Kimball and M. E. Schrader, ” Dye-sensitized photooxidations” J. Am. Chem. Soc. 81(1959) 5095-5099.
[12]S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. I.” J. Phys. Chem. 69(1965)641-647.
[13]S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. II.” J. Phys. Chem. 69(1965)647-656.
[14]S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. III.” J. Phys. Chem. 69(1965)2834-2841.
[15]S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. IV.” J. Phys. Chem. 69(1965)2842-2848
[16]Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.goxygen in dye-sensitized photooxygenation reactions. I” J. Am. Chem. Soc. 89(1967)5455-5456.
[17]Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.goxygen in dye-sensitized photooxygenation reactions. II” J. Am. Chem. Soc. 89(1967)5456-5457.
[18]H. Gerischer, H. Tributsch, Elektrochemische Untersuchungen zurspektralen Sensibilisierung von ZnO-Einkristallen. Ber. Bunsen-Ges. Phys. Chem. 72(1968)437-445.
[19]H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature 261 (1976) 402-403.
[20]Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Y. Han,“Dye-sensitized solar cells with conversion efficiency of 11.1%”, Jpn. J. Appl.Phys. 25 (2006) 638-640.
[21]莊浩宇,陳東煌 (2009) 取之不盡的太陽能-光電化學反應,科學發展月刊,436,66。[22]M. Gratzel, “Solar energy conversion by dye-sensitized photovoltaic cells”,Inorg. Chem. 44 (2005) 6841-6851.
[23]M. Gratzel, “Conversion of sunlight to electric power by nanocrystallinedye-sensitized solar cells”, J. Photochem. Photobio. A 164 (2004) 3-14.
[24]A. Hagfeldt, M. Gratzel, “Light-induced redox reactions in nanocrystallinesystems”, Chem. Rev. 95 (1995) 49-68.
[25]K. Kalyanasundaram, M. Gratzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coord. Chem. Rev.177 (1998) 347-414.
[26]M. Gratzel﹐“Mesoporous oxide junctions and nanostructured solar cells”, Current Opin. Colloid Interf. Sci. 4 (1999) 314-321.
[27]D. Cahen, G. Hodes, M. Gra1tzel, J. Francuois, I. Riess, “Nature of photovoltaic action in dye-sensitized solar cells”, J. Phys. Chem. B 104 (2000) 2053-2059
[28]X.-T. Zhang, H.-W. Liu, T. Taguchi, Q.-B. Meng, O. Sato, A. Fujishima, “Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films”, Sol. Energy Mater. Sol. Cells. 81 (2004)197–203.
[29]M. Gratzel﹐“Perspectives for dye-sensitized nanocrystalline solar cells”, Prog.Photovolt. Res. Appl. 8 (2000) 171-185.
[30]Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel﹐“Investigation of sensitizer adsorption and the influence of protons on current and voltagen of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B 107 (2003) 8981-8987.
[31]Md. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells”, J. Am.Chem. Soc. 123 (2001) 1613-1624.
[32]Liu Y.;Hagfeldt A.;Xiao X.;Lindquist S.﹐Sol. Energy Mater. Sol. Cells﹐55﹐(1998),267–281.
[33]Hara K. et al. “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline Ti02 solar cells .”﹐Sol. Energy Mater. Sol. Cells 2001﹐70﹐151–161.
[34]K. Kalyanasundaram and M. Gratzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices” Coord. Chem. Rev.(1998) 77 347-414
[35]Haque et al., “Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias”J. Phys. Chem. B (1998) 102 1745-1749
[36]B. O''Regan, M. Graetzel, “A Low-cost, High-eFFiciency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films”, Nature 353, (2001) 737-739 .
[37]A. Kay, M. Gratzel, “Photosensitization of Titania Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins”, J. Phys. Chem. 97, (1993) 6272-6277.
[38]逢垛生,太陽能發電原理與應用,北京:人民郵電出版社,2007,38~55。
[39]M. S. dresselhaus﹐J. Mater. Res. Vol.13﹐pp.2355, (1998).
[40]H.W. Kroto, J.R. Heath, S.C. O’Boran, R.F. Smalley. Nature, Vol.318, pp.162, (1985).
[41]S. Iijima, Nature, Vol. 354, pp.56 (1991)
[42]李元堯,「21 世紀的尖端材料-奈米碳管」,化工技術,第11卷,第2期,第140-159頁(2003)。[43]S. Iijima, T.Ichihashi, Nature, Vol.353, pp.603~605, (1993).
[44]D. S. Bethune, C. H. Kiang, et al. Nature, Vol.363, pp.605~607, (1993).
[45]韋進全、張先鋒、王昆林,奈米碳管巨觀體:物理化學特性與應用,五南,2009。
[46]成會明,奈米碳管Carbon nanotubes,五南圖書出版社,2004
[47]高陳佑,多層奈米碳管之氧化:以五種酸液及鹼液之液相氧化,國立台灣科技大學,中華民國九十七年七月。
[48]貝倫,純化程序對奈米碳管表面特性影響之研究,中華民國九十五年七月。
[49])Harris, Cambridge Press, (Cambridge London, 1999).
[50]G. Dresselhaus, M.S. Dresslhaus, and P. Eklund, Phys. World , Vol.11, pp.33, (1998).
[51]J.C. Charlier, J.P. Issi, Applied Physics A: Materials Science & Processing, pp.67~69, (1998).
[52]黃建盛,科學焦點-物理-奈米碳管簡介。
[53]J. V. Landuyt, G. V. Tendeloo and S. Amelinckx, Pure and Applied Chemistry, Vol. 57 , pp. 1373-1382, (1985).
[54]R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Physical Review B, Vol.46, pp.1804, (1992).
[55]R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Applied Phys. Lett., Vol.60, pp.2204,(1992).
[56]黃智宏,聚醯亞胺/矽烷耦合劑改質多壁奈米碳管之奈米材料的性質探討,中華民國九十九年七月。
[57]N.S.Lee, D.S.Chung, I.T.Han, J.H.Kang, et al., Diamond and Related Materials, Vol.10, pp.265~270, (2001)
[58]Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306,666–669 (2004).
[59]Lee, C. et al.. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008, 321 (5887): 385.
[60]Nair, R. R. et al.. Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008, 320 (5881): 1308.
[61]Ishigami, Masa; et al. Atomic Structure of Graphene on SiO2. Nano Lett. 2007, 7 (6): 1643–1648.
[62]Avouris, P., Chen, Z., and Perebeinos, V. Carbon-based electronics. Nature Nanotechnology. 2007, 2 (10): 605.
[63]Wallace, P. R. The Band Theory of Graphite. Physical Review. 1947, 71: 622.
[64]Charlier, J.-C.; Eklund, P.C.; Zhu, J. and Ferrari, A.C. Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes//from Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Ed. A. Jorio, G. Dresselhaus, and M.S. Dresselhaus. Berlin/Heidelberg: Springer-Verlag. 2008..
[65]S. P. Somani, P. R. Somani, M. Umeno, Planer nano-graphenes from camphor by CVD. Chemical Physics Letters, 2006.430(1-3):P.56-59.
[66]C. Y. Su, A. Y. Lu, C. Y. Wu, Y. D. Li, K.K. Liu, W. Zhang, S. Y. Lin, Z. Y. Juang, Y. L. Zhong, F. R. Chen and L. J. Li*, Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition, Nano Letters 11, 3612-3616 (2011).
[67]Li,* X. Wang,* L. Zhang, S. Lee, H. Dai, Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors, SCIENCE, 29 FEBRUARY 2008, P:1228~1232.
[68]柯明青, 熱還原石墨烯對超臨界流體二氧化碳發泡聚苯乙烯砲孔之影響, 2012。
[69]J. J. Xu, K. Wang, S.Z. Zu , B.H. Han *, and Z. Wei *, Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage, ACS Nano, 2010, 4 (9), pp 5019–5026.
[70]Particle Sciences, Physical Stability of Disperse Systems, Technical Brief: 2009: Volume 1.
[71]Chou, A.; Bocking, T.; Singh, N. K.; Gooding, J. J. Chem, Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties, 2005 Feb 21;(7):842-4. Epub 2005 Jan 13.
[72]F. Malara, M. Manca,*, L. D. Marco, P. Pareo, and G. Gigli, Flexible Carbon Nanotube-Based Composite Plates As Efficient Monolithic Counter Electrodes for Dye Solar Cells, ACS Appl. Mater. Interfaces 2011, 3, 3625–3632
[73]陳信良,聚胺酯/奈米碳管奈米複合材料合成與物性之研究,國立雲林科技大學,中華民國九十四年七月。
[74]周貝倫,純化程序對奈米碳管表面特性影響之研究,中華民國九十五年七月。
[75]Yi Zhang, Drug Discovery Today ,(2010).