(3.215.183.251) 您好!臺灣時間:2021/04/22 21:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:白晉瑋
研究生(外文):Ching-Wei Pai
論文名稱:物理改質奈米碳管與石墨烯混摻製作染料敏化太陽能電池之聚丙烯反電極
論文名稱(外文):Dye-solar Cell’s Counter Electrode Made by Polypropylene Blend with Physical Modified Multi-wall Carbon Nanotubes and Graphene
指導教授:程耀毅
指導教授(外文):Yao-Yi Cheng
口試委員:戴子安芮祥鵬
口試委員(外文):Chi-an DaiSyang-Peng Rwei
口試日期:2013-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:90
中文關鍵詞:聚丙烯(PP)多壁奈米碳管(MWCNTs)石墨稀奈米複合材料分散劑(Dispersions)染料敏化太陽能電池(Dye-Cell)
外文關鍵詞:Polypropylene (PP)Multi-wall carbon nanotubes(MWCNT)Graphene(GP)NanocompositeDye-solar cellDispersions
相關次數:
  • 被引用被引用:1
  • 點閱點閱:197
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管具有優異的導電特性、熱性質及機械性質,是一個具有良好潛力的奈米添加材料,而石墨烯為近年來所發現的新型奈米材料來自於石墨的剝層,但由於奈米碳管及石墨烯在高分子基材間的介面相容性不佳,易導致其團聚發揮其預期效果,因此在應用上必須對奈米碳管及石墨烯進行改質。本實驗是將奈米碳管及石墨烯利用不同分散劑來比較其分散效果,沒有用化學改質法分散的目的,是希望保留多壁奈米碳管優良的高長徑比(aspect ratio),首先將多壁奈米碳管與石墨烯兩者製成薄膜,之後利用溶液法將多壁奈米碳管混摻至聚丙烯中塗佈之,將其製成替代染料敏化太陽能電池的反電極。
本實驗使用熱重損失分析儀(TGA)及熱差分析儀(DSC)探討複材的熱穩定性質,多點探針高阻儀(megohmmeter)觀測複材的導電性,掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)進行表面分析。藉由奈米碳管的高長徑比可在聚丙烯基材中形成網狀分布的結構,有效的提升聚丙烯複合材料的導電度,進一步的提升其熱穩定性及機械性質。


Carbon Nanotubes (CNTs) with excellent electrical conductivity, mechanical and thermal properties can be potentially used as nano-reinforcements in polymer composite. Graphene (GP) is layers of exflorated graphite. The lack of interfacial interactions between CNTs and GP with polymer matrix causes their agglomeration; therefore, it is necessary to modify CNTs to enhance the compatibility within a polymer matrix. We dispersing CNTs and GP by physical dispersion, without chemical dispersion causes CNTs has high aspect ratio. First, prepared the CNTs and GP''s film. Then we made solution of polypropylene (PP) with CNTs to coat on the beter electrical film, which could be them need as antielectrode on the dye solar cell.
The thermal properties were analyzed by Thermogravimetric analysis (TGA) and Differential scanning calorimetry(DSC). The electrical conductivity properties of CNTs film and electrical substrate were obtained by multi-sensers Super Megohmmeter. We used Scanning electron microscope(SEM) and Transmission electron microscopy (TEM) to examine the morphology of materials. Due to the high aspect ratio of CNTs, the formation of a network structure between PP and physically modified MWNTs significantly improves electrical conductivity, thereby increasing its thermal and mechanical properties.


摘要 i
ABSTRACT ii
誌 謝 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1前言 1
1.2研究動機 3
第二章 文獻回顧 4
2.1太陽能電池之簡介 4
2.1.1染料敏化太陽能電池 5
2.1.1(a): 染料敏化太陽能電池發展史 5
2.1.1(b): 染料敏化太陽能電池之工作原理 6
2.1.1(c): 染料敏化太陽能電池之效率影響因素 8
2.1.1(d): 染料敏化太陽能電池之電解液 13
2.1.2太陽能電池的等校電路 13
2.2奈米碳管的簡介 17
2.2.1奈米碳管的特性 19
2.2.2奈米碳管的合成與影響因素 23
2.2.3奈米碳管的應用 24
2.3石墨烯的簡介 27
2.3.1石墨烯的特性 28
2.3.2石墨烯的製作 30
2.3.2(a)機械剝離法(Mechanical exfoliation) 30
2.3.2(b)化學氣相沉積法(Chemical vapor deposition, CVD) 30
2.3.2(c)磊晶成長法(Epitaxial growth) 31
2.3.2(d)氧化石墨法(Graphite oxide) 31
2.3.2(e)熱還原法(Thermally reduced grapheme, TRG) 32
第三章 實驗設備與步驟 33
3.1實驗藥品 33
3.2實驗儀器 37
3.3實驗配方簡稱與全名 38
3.4 實驗流程 40
3.4.1 多壁奈米碳管與石墨稀之改質與測試比較 40
3.4.2 聚丙烯/奈米碳管複材的製備 41
3.5 實驗步驟 42
3.5.1改質多壁奈米碳管/石墨烯 (Modify MWCNTs/GP) 42
3.5.1 (a)純化多壁奈米碳管(UCNTs) 42
3.5.1 (b)高分子改質多壁奈米碳管(Dispersant/UCNTs) 42
3.5.1 (c) 高分子改質石墨烯(Dispersant/UGP) 43
3.5.2多壁奈米碳管/石墨烯,薄膜的製備(Membrane) 43
3.5.3聚丙烯/奈米碳管的製備(Blending) 44
3.5.3 (a)PP/MCNTs複合材料的製備 44
3.5.3 (b)PP/CNTs與M.CNTs及M.GP薄膜複合材料的貼合製備 45
3.5.4染料敏化太陽能陽電池(DSSC)之製備 45
3.5.4 (a) P90染料敏化太陽能陽電池(DSSC)之陽電極之製備 45
3.5.4 (b)染料敏化太陽能電池(DSSC)之封裝製備 46
3.6 分析試片的製備 47
第四章 結果與討論 50
4.1 沉降分析 50
4.2 表面電阻率之分析(Surface Resistivity) 52
4.2.1 分散劑之比較 52
4.2.2 M.CNTs與M.GP最低表面電阻率之測試 52
4.2.3 M.CNTs/PP/CNTs與M.GP/PP/CNTs表面電阻率測試 54
4.3 表面分析(Surface Analysis) 58
4.3.1 原子力顯微鏡(AFM)之分析 58
4.3.2 光學性質之分析 60
4.3.3 SEM微觀分析分析 64
4.3.4 TEM微觀分析分析 69
4.4 光電轉換效率(Effection Analysis) 72
4.5 熱重損失分析(TGA) 76
4.6 示差掃描量熱儀(DSC) 79
第五章 結論 82
第六章 建議與未來工作 84
參考文獻 85


[1]洪偉修, 世界上最薄的材料--石墨烯, 98康熹化學報報, 2009-11
[2]Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007)
[3]洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工技術,第49卷,第1期,第23-30頁(2002)
[4]M. Gratzel, “Photoelectrochemical cells”, Nature 414 (2001) 338-344.
[5]黃建昇,結晶矽太陽電池發展近況,工業材料雜誌,203 (2003),150。
[6]國家實驗研究院科技政策研究與資訊中心(Science & Technology Policy Research andInformation Center,STPI).
[7]M. Gratzel, “Photovoltaic and photoelectrochemical conversion of solar energy”,Phil. Trans. R. Soc. A 365 (2007) 993-1005.
[8]B. O’Regan, M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353 (1991) 737-740.
[9]X. Chen, S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties,modifications, and applications”, Chem. Rev. 107 (2007) 2891-2959.
[10]F. Hurd and R. Livingston, “The quantum yields of some dye-sensitized photooxidations” J. Phys. Chem. 44(1940)865-873.
[11]G. Oster, J. S. Bellin, R. W. Kimball and M. E. Schrader, ” Dye-sensitized photooxidations” J. Am. Chem. Soc. 81(1959) 5095-5099.
[12]S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. I.” J. Phys. Chem. 69(1965)641-647.
[13]S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. II.” J. Phys. Chem. 69(1965)647-656.
[14]S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. III.” J. Phys. Chem. 69(1965)2834-2841.
[15]S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. IV.” J. Phys. Chem. 69(1965)2842-2848
[16]Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.goxygen in dye-sensitized photooxygenation reactions. I” J. Am. Chem. Soc. 89(1967)5455-5456.
[17]Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.goxygen in dye-sensitized photooxygenation reactions. II” J. Am. Chem. Soc. 89(1967)5456-5457.
[18]H. Gerischer, H. Tributsch, Elektrochemische Untersuchungen zurspektralen Sensibilisierung von ZnO-Einkristallen. Ber. Bunsen-Ges. Phys. Chem. 72(1968)437-445.
[19]H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature 261 (1976) 402-403.
[20]Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Y. Han,“Dye-sensitized solar cells with conversion efficiency of 11.1%”, Jpn. J. Appl.Phys. 25 (2006) 638-640.
[21]莊浩宇,陳東煌 (2009) 取之不盡的太陽能-光電化學反應,科學發展月刊,436,66。
[22]M. Gratzel, “Solar energy conversion by dye-sensitized photovoltaic cells”,Inorg. Chem. 44 (2005) 6841-6851.
[23]M. Gratzel, “Conversion of sunlight to electric power by nanocrystallinedye-sensitized solar cells”, J. Photochem. Photobio. A 164 (2004) 3-14.
[24]A. Hagfeldt, M. Gratzel, “Light-induced redox reactions in nanocrystallinesystems”, Chem. Rev. 95 (1995) 49-68.
[25]K. Kalyanasundaram, M. Gratzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coord. Chem. Rev.177 (1998) 347-414.
[26]M. Gratzel﹐“Mesoporous oxide junctions and nanostructured solar cells”, Current Opin. Colloid Interf. Sci. 4 (1999) 314-321.
[27]D. Cahen, G. Hodes, M. Gra1tzel, J. Francuois, I. Riess, “Nature of photovoltaic action in dye-sensitized solar cells”, J. Phys. Chem. B 104 (2000) 2053-2059
[28]X.-T. Zhang, H.-W. Liu, T. Taguchi, Q.-B. Meng, O. Sato, A. Fujishima, “Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films”, Sol. Energy Mater. Sol. Cells. 81 (2004)197–203.
[29]M. Gratzel﹐“Perspectives for dye-sensitized nanocrystalline solar cells”, Prog.Photovolt. Res. Appl. 8 (2000) 171-185.
[30]Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel﹐“Investigation of sensitizer adsorption and the influence of protons on current and voltagen of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B 107 (2003) 8981-8987.
[31]Md. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells”, J. Am.Chem. Soc. 123 (2001) 1613-1624.
[32]Liu Y.;Hagfeldt A.;Xiao X.;Lindquist S.﹐Sol. Energy Mater. Sol. Cells﹐55﹐(1998),267–281.
[33]Hara K. et al. “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline Ti02 solar cells .”﹐Sol. Energy Mater. Sol. Cells 2001﹐70﹐151–161.
[34]K. Kalyanasundaram and M. Gratzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices” Coord. Chem. Rev.(1998) 77 347-414
[35]Haque et al., “Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias”J. Phys. Chem. B (1998) 102 1745-1749
[36]B. O''Regan, M. Graetzel, “A Low-cost, High-eFFiciency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films”, Nature 353, (2001) 737-739 .
[37]A. Kay, M. Gratzel, “Photosensitization of Titania Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins”, J. Phys. Chem. 97, (1993) 6272-6277.
[38]逢垛生,太陽能發電原理與應用,北京:人民郵電出版社,2007,38~55。
[39]M. S. dresselhaus﹐J. Mater. Res. Vol.13﹐pp.2355, (1998).
[40]H.W. Kroto, J.R. Heath, S.C. O’Boran, R.F. Smalley. Nature, Vol.318, pp.162, (1985).
[41]S. Iijima, Nature, Vol. 354, pp.56 (1991)
[42]李元堯,「21 世紀的尖端材料-奈米碳管」,化工技術,第11卷,第2期,第140-159頁(2003)。
[43]S. Iijima, T.Ichihashi, Nature, Vol.353, pp.603~605, (1993).
[44]D. S. Bethune, C. H. Kiang, et al. Nature, Vol.363, pp.605~607, (1993).
[45]韋進全、張先鋒、王昆林,奈米碳管巨觀體:物理化學特性與應用,五南,2009。
[46]成會明,奈米碳管Carbon nanotubes,五南圖書出版社,2004
[47]高陳佑,多層奈米碳管之氧化:以五種酸液及鹼液之液相氧化,國立台灣科技大學,中華民國九十七年七月。
[48]貝倫,純化程序對奈米碳管表面特性影響之研究,中華民國九十五年七月。
[49])Harris, Cambridge Press, (Cambridge London, 1999).
[50]G. Dresselhaus, M.S. Dresslhaus, and P. Eklund, Phys. World , Vol.11, pp.33, (1998).
[51]J.C. Charlier, J.P. Issi, Applied Physics A: Materials Science & Processing, pp.67~69, (1998).
[52]黃建盛,科學焦點-物理-奈米碳管簡介。
[53]J. V. Landuyt, G. V. Tendeloo and S. Amelinckx, Pure and Applied Chemistry, Vol. 57 , pp. 1373-1382, (1985).
[54]R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Physical Review B, Vol.46, pp.1804, (1992).
[55]R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Applied Phys. Lett., Vol.60, pp.2204,(1992).
[56]黃智宏,聚醯亞胺/矽烷耦合劑改質多壁奈米碳管之奈米材料的性質探討,中華民國九十九年七月。
[57]N.S.Lee, D.S.Chung, I.T.Han, J.H.Kang, et al., Diamond and Related Materials, Vol.10, pp.265~270, (2001)
[58]Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306,666–669 (2004).
[59]Lee, C. et al.. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008, 321 (5887): 385.
[60]Nair, R. R. et al.. Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008, 320 (5881): 1308.
[61]Ishigami, Masa; et al. Atomic Structure of Graphene on SiO2. Nano Lett. 2007, 7 (6): 1643–1648.
[62]Avouris, P., Chen, Z., and Perebeinos, V. Carbon-based electronics. Nature Nanotechnology. 2007, 2 (10): 605.
[63]Wallace, P. R. The Band Theory of Graphite. Physical Review. 1947, 71: 622.
[64]Charlier, J.-C.; Eklund, P.C.; Zhu, J. and Ferrari, A.C. Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes//from Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Ed. A. Jorio, G. Dresselhaus, and M.S. Dresselhaus. Berlin/Heidelberg: Springer-Verlag. 2008..
[65]S. P. Somani, P. R. Somani, M. Umeno, Planer nano-graphenes from camphor by CVD. Chemical Physics Letters, 2006.430(1-3):P.56-59.
[66]C. Y. Su, A. Y. Lu, C. Y. Wu, Y. D. Li, K.K. Liu, W. Zhang, S. Y. Lin, Z. Y. Juang, Y. L. Zhong, F. R. Chen and L. J. Li*, Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition, Nano Letters 11, 3612-3616 (2011).
[67]Li,* X. Wang,* L. Zhang, S. Lee, H. Dai, Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors, SCIENCE, 29 FEBRUARY 2008, P:1228~1232.
[68]柯明青, 熱還原石墨烯對超臨界流體二氧化碳發泡聚苯乙烯砲孔之影響, 2012。
[69]J. J. Xu, K. Wang, S.Z. Zu , B.H. Han *, and Z. Wei *, Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage, ACS Nano, 2010, 4 (9), pp 5019–5026.
[70]Particle Sciences, Physical Stability of Disperse Systems, Technical Brief: 2009: Volume 1.
[71]Chou, A.; Bocking, T.; Singh, N. K.; Gooding, J. J. Chem, Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties, 2005 Feb 21;(7):842-4. Epub 2005 Jan 13.
[72]F. Malara, M. Manca,*, L. D. Marco, P. Pareo, and G. Gigli, Flexible Carbon Nanotube-Based Composite Plates As Efficient Monolithic Counter Electrodes for Dye Solar Cells, ACS Appl. Mater. Interfaces 2011, 3, 3625–3632
[73]陳信良,聚胺酯/奈米碳管奈米複合材料合成與物性之研究,國立雲林科技大學,中華民國九十四年七月。
[74]周貝倫,純化程序對奈米碳管表面特性影響之研究,中華民國九十五年七月。
[75]Yi Zhang, Drug Discovery Today ,(2010).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔