(3.238.118.78) 您好!臺灣時間:2021/04/15 21:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王家澤
研究生(外文):Jia-Ze Wang
論文名稱:[FeII(H2O)2(PTZ)2]壓力誘導磁性變化之粉末繞射拉曼光譜及X光吸收光譜特性研究
論文名稱(外文):Pressure-Induced Spin Transition of [FeII(H2O)2(PTZ)2] Complex : Characterization by Powder X-ray Diffraction, Raman and X-Ray Absorption Spectroscopy
指導教授:許益瑞
指導教授(外文):I-Jui Hsu
口試委員:林志明徐新光李志甫
口試日期:2013-07-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:64
中文關鍵詞:相變高壓拉曼光譜X光吸收光譜X光粉末繞射Rietveld結構精算
外文關鍵詞:phase transitionhigh pressureRaman spectroscopyX-ray absorption spectroscopy(XAS)Powder X-ray diffraction(PXRD)Rietveld refinement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中,我們合成一個鐵二價的錯合物[FeII(H2O)2(PTZ)2] (PTZ=5-(2-吡啶基)-1氫-四唑),並且利用X光粉末繞射(PXRD)、X光吸收光譜(XAS)、超導量子干涉磁量儀(SQUID)以及拉曼光譜來鑑定其結構及特性。由General Structure Analysis System (GSAS)軟體之Rietveld 精算結構結果顯示鐵位於結構中的反轉中心,赤道位和配位基上的氮形成鍵結,其平均的鍵長為2.16(1)埃,而軸位上的氧則來自於和水的鍵結,其平均的鍵長為2.15(1)埃。為了確定磁性,我們透過超導量子干涉磁量儀(SQUID)以及鐵的L2,3 – edges X光吸收光譜,可知在常壓時有四個未成對電子且為高自旋態,其晶場配位能約為1 eV左右。在高壓實驗中,此錯合物隨著壓力加到7.1GPa時,其自旋態從高自旋態轉變為低自旋態。根據延伸X光吸收精細結構(extended x-ray absorption fine structure)解析,鐵氮和鐵氧的的鍵長分別縮短到1.95(2)及1.94(2)埃。從X光粉末繞射的結果顯示,隨著壓力加至4.65GPa,(1 1 0)繞射峰的強度逐漸消失,可知其為相變之壓力點,此(1 1 0)繞射峰的方向恰為兩配位基可互相靠近之方位。此外,藉由鐵的K-edge X光吸收近邊緣結構(x-ray absorption near edge structure)和X光粉末繞射以及拉曼圖譜,證明其高低自旋態以及結構的轉換為可逆的。

An iron(II) complex, [FeII(H2O)2(PTZ)2] (PTZ = 5-(2-Pyridyl)-1H-tetrazole), was synthesized and characterized by powder X-ray diffraction, X-ray absorption spectroscopy (XAS), magnetic susceptibility, and Raman spectroscopy. The Rietveld refinement confirms Fe is at inversion center bonded by four N atoms of PTZ ligands at equatorial positions and two O atoms of H2O at axial sites. The averaged bond lengths of Fe-N and Fe-O are 2.16(1) and 2.15(1) A, respectively. The magnetic measurement and Fe L2,3 –edges XAS indicate that it is at high spin (HS) state with four unpaired electrons (Stotal = 2) and the crystal field strength (10Dq) is about 1.0 eV at ambient. In pressure induced experiment, the compound transitions to low spin (LS) state around 7.1GPa and the averaged bond lengths of Fe-N and Fe-O are 1.95(2) and 1.94(2) A, respectively, based on EXAFS (extended x-ray absorption fine structure) analysis. According to X-ray diffraction measurements, the phase transition pressure is around 4.65GPa indicated by the disappearance of reflection (1 1 0) .This is the direction of both PTZ ligands can move toward together. Such pressure induced HS to LS transitions is reversible and confirmed by Fe K-edge XANES (X-ray absorption near edge structure), powder X-ray diffraction and Raman measurement.

摘 要 i
ABSTRACT ii
誌 謝 iv
CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii
Chapter 1 INTRODUTION 1
1.1 Pressure-Induced Spin Transition Complexes 1
1.2 Motivation 3
Chapter 2 EXPERIMENTAL METHOD AND THEORY 5
2.1 Synthesis of [FeII(H2O)2(PTZ)2] 5
2.2 Magnetic measurement 5
2.3 High-pressure device 6
2.3.1 Diamond-anvil high pressure cell 6
2.3.2 Pressure measurement 7
2.4 Raman Spectroscopy 8
2.4.1 Theory of Raman Spectroscopy 8
2.4.2 Experiment of Raman 11
2.5 X-ray Scattering 12
2.5.1 Bragg’s Law 12
2.5.2 Structure factor 14
2.5.3 Rietveld Method 15
2.5.4 Experiment of XRD 17
2.6 X-Ray absorption spectroscopy 17
2.6.1 LIII,II edges 19
2.6.2 XANES 21
2.6.3 EXAFS 24
2.6.4 Experiment of XAS 25
2.6.5 EXAFS data analysis 30
Chapter 3 RESULTS AND DISCUSSION 32
3.1 Structure 32
3.2 Unpaired Electrons Determination 37
3.2.1 Magnetic Susceptibility Measurement 37
3.2.2 LIII,II edges Absorption Spectroscopy 38
3.3 High-pressure Raman 39
3.4 X-ray diffraction 43
3.5 X-Ray Absorption Spectroscopy 51
3.6 Comparisons of XRD and XAS 61
Chapter 4 Conclusion 63
REFENCES 64
APPENDIX 68































LIST OF TABLES
Table 3.1. Details of [FeII(H2O)2(PTZ)2] data PXRD refinement and single crystal results. 34
Table 3.2. Indexing result of the a, b and c axes,?? angle and unit cell volume with the pressure up to 2.67GPa. 48
Table 3.3. Fitting results of the EXAFS analysis. 56
Table 3.4. Decompression of Fitting results of the EXAFS analysis. 57
Table 3.5. Comparisons of Fe-N bond lengths with indexing and EXAFS results. 60





























LIST OF FIGURES
Figure 1.1. Schematic representation of the pressure influence (P2 > P1) on the LS and 3
HS potential wells of Fe(II). 3
Figure 2.1. Schematics of the core of a diamond anvil cell. 8
Figure 2.2. Fluorescence spectrum of ruby R1 and R2. 9
Figure 2.3. Diatomic Molecule as a Mass on a Spring. 10
Figure 2.4. Jablonski Energy Diagram for Raman Scattering. 12
Figure 2.5. Schematic illustration of Bragg’s law. 14
Figure 2.6. Atomic scattering factors f0 of for hydrogen, nitrogen, oxygen and iron, 16
plotted against sinθλ . 16
Figure 2.7. The flow chart of GSAS structure refinement. 17
Figure 2.8. The Fe K-edge X-ray absorption spectrum of [FeII(H2O)2(PTZ)2]. 20
Figure 2.9. The classification of X-ray absorption edge. 21
Figure 2.10. LIII-edge and LII-edge X-ray absorption spectroscopy of [FeII(H2O)2(PTZ)2]. 22
Figure 2.11. The terminal state wave function of diatomic molecular and XANES and EXAFS. 23
Figure 2.12. (a)The single scattering of EXAFS and (b)the multiple scattering of XANES. The arrow is the route of photo electron. The route (1), (2)and (3) is single, double and triple scattering, respectively. 24
Figure 2.13. Diffraction peak of diamond (marked by red arrows) in Fe K-edge EXAFS 28
from [FeII(H2O)2(PTZ)2]. 28
Figure 2.14. Schematic of DAC stages motor with arcx angle or arcy angle. I0 is used to 29
monitor the intensity of the incident beam, It is for transmitted beam. 29
Figure 2.15. Marked by red arrows is diffraction peak position in scanning spectrum. 29
Figure 2.16. The flow chart of EXAFS data analysis. 31
Figure 3.1. GSAS refinement result of [FeII(H2O)2(PTZ)2]. 34
Figure 3.2. The crystal structure of [FeII(H2O)2(PTZ)2] drawn as 50% thermal ellipsoil. 36
Figure 3.3. χM and ?eff versus T plots of [FeII(H2O)2(PTZ)2] in the temperature range of 2-300K. 37
Figure 3.4. Experimental (black line) and simulated spectra of LIII,II-edges of FeII by 38
CTM4XAS (red line) and ORCA (Green line). For comparisons, the calculated 38
spectra are shift by 0.73 eV. 38
Figure 3.5. The peak positions of Raman shift for (a) PTZ and (b) [FeII(H2O)2(PTZ)2]. (i.p. : in plane) 39
Figure 3.6.Pressure-dependent Raman spectra of [FeII(H2O)2(PTZ)2] at room temperature. 40
Figure 3.7. Decompress Raman spectra of [FeII(H2O)2(PTZ)2] at room temperature. 41
Figure 3.8. Fe-N vibrational modes about 180~400 cm-1 of [FeII(H2O)2(PTZ)2] between 41
ambient pressure and 13.96GPa. 41
Figure 3.9. (a)Relative variation of PXRD pattern of [FeII(H2O)2(PTZ)2] as a function of 44
pressure.(b)PXRD pattern in terms of d-spacing. 44
Figure 3.10. The pressure dependent variation of d111. 44
Figure 3.11. The plane of (111) in monoclinic crystal of [FeII(H2O)2(PTZ)2] 45
Figure 3.12. The pressure dependent variation of d110. 45
Figure 3.13. The plane of (110) in monoclinic crystal of [FeII(H2O)2(PTZ)2]. 46
Figure 3.14. The color of sample changes from yellow to red between ambient and 4.65GPa. 46
Figure 3.15. The powder x-ray diffraction pattern variation with different pressure. 47
Figure 3.16. Relative variation of the a, b and c axes and unit cell volume of [FeII(H2O)2(PTZ)2] as a function of pressure. Data are derived from indexing. 48
Figure 3.17. XANES spectra of [FeII(H2O)2(PTZ)2] at ambient. 50
Figure 3.18. A normalized XANES spectra for [FeII(H2O)2(PTZ)2]. 51
[FeII(H2O)2(PTZ)2]. 52
Figure 3.20. EXAFS fitting spectra in (a) in k-space and (b) R-space. 54
Figure 3.21. Fe-N bond lengths variation with external pressure. 55
Figure 3.22. EXAFS fitting spectra in (a) k-space and (b) R-space of decompression. 57
Figure 3.23. Bond length of Fe-N from EXAFS and Indexing. 59
Figure A3.1. EXAFS fitting spectra of of k space and R space with various pressure. 66


1.Toftlund, H. Coord. Chem. ReV. 1989, 94, 67.
2.Kӧnig, E. Struct. Bonding (Berlin) 1991, 76, 51.
3.Gutlich, P.; Hauser, A. Coord. Chem. ReV. 1990, 97, 1.
4.Gutlich, P. Struct. Bonding (Berlin) 1981, 44, 83.
5.Gutlich, P.; Garcia, Y.; Spiering, H. Magnetism: molecules to materials IV; Miller, J. S., Ed.; Wiley-CH: New York, 2003.
6.Moliner, N.; Gaspar, A. B.; Munoz, M. C.; Niel, V.; Cano, J.; Real, J.-A. Inorg. Chem. 2001, 40, 3991.
7.Roux, C.; Zarembowitch, J.; Itie, J.-P.; Polian, A.; Verdaguer, M. ressure-induced,Boillot, M.-L.; Roux, C.; Audiere, J.-P.; Dausse, A.;Zarembowitch, J. Inorg. Chem. 1996, 35, 574–580.
8.Nakano, K.; Akahama, Y.; Ohishi, Y.; Kawamura, H., Japanese Journal of Applied Physics 39 (Part 1, No. 3A), 1249.
9.P. Gutlich, V. Ksenofontov, A.B. Gaspar; Pressure effect studies on spin crossover systems Coordination Chemistry Reviews; 249(17-18), 2005, 1811-1829.
10.A.H. Ewald, R.L. Martin, E. Sinn, A.H. White, Inorg. Chem. 8, 1969, 1837.
11.E. Kӧnig, Ber. Bunsenges. Phys. Chem. 76,1972, 975.
12.Yurish, S.Y. Smart sensors for electrical and non-electrical, physical and chemical variables: State-of-the-art. NATO Sci. Ser. II 2004, 181, 1–50.
13.Wheeler, J. Importance of pressure solution and coble creep in the deformation of polymineralicrocks. J. Geophys. Res. 1992, 97, 4579–4586.
14.Hiligren, V.J.; Drake, M.J.; Rubie, D.C. High-pressure and high-temperature experiments on core-mantle segregation in the accreting earth. Science 1994, 264, 1442–1445.
15.Sullivan, J.; Mueller, T.J. Polyvinylidene fluoride film sensors for measurement of unsteady pressures on aerodynamic surfaces. Part II: Application to a small-scale marine propeller in spatially distorted mean flow. Exp. Fluids 1999, 27, 85–91.
16.Watanabe, K.; Kurihara, Y.; Nakamura, T.; Tanaka, H. Design of a low-frequency microphone for mobile phones and its application to ubiquitous medical and healthcare monitoring. IEEE Sens. 2010, 10, 934–941.
17.Gutlich, P.; Hauser, A.; Spiering, H. Thermal and optical switching of iron(II) complexes. Angew. Chem. Int. Ed. Engl. 1994, 33, 2024–2054.
18.Gutlich, P.; Garcia, Y.; Goodwin, H.A. Spin crossover phenomenain Fe(II) complexes. Chem. Soc. Rev. 2000, 29, 419–427.
19.Gutlich, P.; Garcia, Y.; Spiering, H. Spin Transition Phenomenon. In Magnetism: From Molecules to Materials, 1st ed.; Miller, J.S., Drillon, M., Eds.; Wiley-VCH: New York, NY, USA, 2003; Volume IV, pp. 271–344.
20.Gutlich, P., Goodwin, H.A. Spin crossover-an overall perspective. Spin crossover in transition metal compounds I. Top. Curr. Chem. 2004, 233, 1–47.
21.Gutlich, P.; Bukhard, H.; Joerg, M. Making inks for protection of security paper against forgery. 2004, DE 10307513 A1 20040909.
22.Chemical Analysis, edited by D. C. Koningsberger and R. Prins(Willy- -Interscience , New York, 1988), Vol. 92, p. 688.
23.J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 _2000_.
24.A. Filipponi, J. Phys.: Condens. Matter 13, R23 (2001).
25.林志明,全華物理專刊第四期,20132(2012).
26.http://bwtek.com/raman-theory-of-raman-scattering/
27.Giacovazzo,C.,Crystallographic Compution, in Fundamentals of Crystallography, edited by Giacovazzo, C. et al, Oxford University Press, 1992; Young, R. A., Ed.; The Rietveld Method; IUCR: Oxford, 1995; McCusker, L. B.; Von Dreele, R. B.; Cox, D. E.; Louer, D.; Scardi, P., Journal of Applied Crystallography 1999, 32 (1), 36-50.
28.Abbate, M.; Fuggle, J. C.; Fujimori, A.; Tjeng, L. H.; Chen, C. T.; Potze, R.; Sawatzky, G.; Eisaki, H.; Uchida, S. Phys. ReV. B 1993, 47, 16124.
29.Collison, D.; Garner, D.; McGrath, C. M.; Mosselmans, J. F. W.; Roper, M. D.; Seddon, J. M. W.; Sinn, E.; Young, N. A. J. Chem. Soc., Dalton Trans. 1997, 4371.
30.Bianconi, A., X-Ray Absorption: Principles, Applications, Techniques of EXAFE, SEXAFS, ed. By D.C. Koningsberger and R. Prins, Jhon Wiley & Sons, New York.3(1998).
31.Stern, E. A., X-Ray Absorption: Principles, Applications, Techniques of EXAFE, SEXAFS, ed. By D.C. Koningsberger and R. Prins, Jhon Wiley & Sons, New York.3(1998); Yokoyama, T., X-Ray Absorption Fine Structure for Catalysts and Surface, ed. by Y. Iwasawa, World Scientific, Singapore, 9 (1996).
32.Frenkel, A.; Stern, E. A.; Voronel, A.; Qian, M.; Newville, M., Physical Review B 1994, 49 (17), 11662-11674.
33.Zabinsky, S. I.; Rehr, J. J.; Ankudinov, A.; Albers, R. C.; Eller, M. J., Physical Review B 1995, 52 (4), 2995-3009.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔