跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周建杕
研究生(外文):Jian-Ddi Jhou
論文名稱:強震觀測網實體資料繪製
論文名稱(外文):Visualization of Strong-Motion Seismograph Network Volume Data
指導教授:謝東儒謝東儒引用關係
口試委員:葉士青楊元森
口試日期:2012-10-03
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資訊工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:37
中文關鍵詞:強震觀測網實體資料曲面擬合
外文關鍵詞:k-netvolume datasurface fit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以往觀測地震觀測網數據的方式,通常是繪製成二維平面圖表來檢視其地震波或地震能量。然而,利用二維平面繪圖檢視地震資訊,對於整個地震缺乏全盤性的觀察及瞭解。因此,本研究之目標在於讓使用者以實體繪圖(volume rendering)技術來觀察地震觀測網的量測數據。針對日本強震觀測網(K-Net),本研究發展實體資料(volume data)產生系統,將日本強震觀測網所蒐集到的地震地表移動加速度量測資料,進行原始數據校正以及振幅包覆線(envelope) 處理。接著進行曲面擬合(surface fit),將沒有觀測站記錄的地區擬合出加速度向量值,產生出一個地震實體資料(volume data) 。本研究之貢獻在於發展出實體資料產生系統,並使用實體繪圖方式,呈現日本地區八個大規模地震的紀錄資料,進而從中觀察出地震波傳遞方向等資訊。

The traditional methods of observe seismic information is based on the two-dimensional plane view seismic waves or energy map. However, we cannot observe the seismic organization completely by used the Two-dimensional plane of survey the earthquake information. Therefore, the contribution of this study is developed a system for the Japanese earthquake observation network. Adjustment earthquake measurement data can be collected by the Japan earthquake observation network. Then use Cubic Hermite Spline interpolation to obtain seismic amplitude more accurate. And use the method of surface fitting to fit its scalar acceleration values of Japan there doesn''t has seismic data, finally, the system generate a volume data. The study collected eight data that the scale of earthquake more than seven intensity, and then the system developed by the research methods seismic measurement data converted to volume data.

目錄

摘要 I
ABSTRACT II
致 謝 IV
表目錄 VI
圖目錄 VII
第一章 緒 論 1
第二章 相關研究 3
第三章 模擬地震資料 7
3.1 資料來源與處理 8
3.2 包覆線 10
3.4 曲面擬合 16
第四章 結果與討論 19
4.1 包覆線比較 19
4.2 效能 21
4.3 實體資料呈現 23
第五章 結論 32
參考文獻 33
附錄 36


[1]National Research Institute for Earth Science and Disaster Prevention, Strong-motion Seismograph Networks, http://www.k-net.bosai.go.jp
[2]T.-J. Hsieh, C.-K. Chen, and K.-L. Ma, "Visualizing Field-Measured Seismic Data," in Proceedings of IEEE Pacific Visualization Symposium, 2010.
[3]Bhattacharyya B. K, "Bicubic spline interpolation as a method for treatment of potential field data", Geophysics, vol.34, issue 3, 1969, pp.402.
[4]David T. Sandwell, "Biharmonic Spline Interpolation Of GEOS-3 and SEASAT Altimeter Data", Geophysics, vol.14, no. 2 , 1987, pp. 139.
[5]Richard Franke, "Scattered data interpolation: Tests of some methods", Math. Comp, vol. 38, 1982, pp. 181-200.
[6]I.K Crain and B.K Bhattacharyya, "Treatment of non-equispaced two-dimensional data with a digital computer ", Geoexploration, vol. 5, issue 4, 1967, pp. 173-194.
[7]U.S. Weather Bureau and Washington, D.C," An operational objective analysis system ", ACM, vol. 87, issue 10, pp. 367-374.
[8]Donald Shepard, "A two-dimensional interpolation function for irregularly space data ", ACM ''68 Proceedings of the 1968 23rd ACM national conference, 1968, pp. 517 – 524.
[9]Richard Franke and Greg Nielson, "Smooth interpolation of large sets of scattered data", International Journal for Numerical Methods in Engineering, vol. 15, issue 11,1980, pp. 1691–1704.
[10]Hardy Rolland L, "Multi-quadric equations of topography and other irregular surfaces ", Journal of Geophysical Research, vol. 76, issue 8, pp. 1905-1915.
[11]Charles A. Micchelli, "Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions", CONSTRUCTIVE APPROXIMATION, vol. 2,1986, pp. 11-22.
[12]Clough, Ray and W. Tocher, James L, "Finite element stiffness matrices for analysis of plates in bending", Matrix Methods in Structural Mechanics, 1966, pp.35.
[13]Gary Herron, "A Characterization of Certain C1 Discrete Triangular Interpolants", SIAM, vol. 22, 1985, pp. 811-819.
[14]Helmut Pottmann "Scattered data interpolation based upon generalized minimum norm networks, CONSTRUCTIVE APPROXIMATION, vol. 7, Number 1, 1991, pp. 247-256.
[15]W. Zhang and Z. TangJ. Li, "Adaptive Hierarchical B-spline Surface Approximation of Large-Scale Scattered Data", Proceeding PG ''98 Proceedings of the 6th Pacific Conference on Computer Graphics and Applications , 1998, pp. 8.
[16]David R Forsey and Richard H. Bartels, "Hierarchical B-spline refinement", SIGGRAPH ''88 Proceedings of the 15th annual conference on Computer graphics and interactive techniques, 1988, pp. 205 – 212.
[17]David R. Forsey and Richard H. Bartels, "Surface fitting with hierarchical splines", ACM Transactions on Graphics (TOG), vol. 14, issue 2, 1995, pp. 134 – 161.
[18]Gunther Greiner. Kai Hormann, "Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines", ACM Transactions on Graphics, vol. 17, 1997, pp. 71-83.
[19]Seungyong Lee , George Wolberg and Sung Yong Shin, "Scattered Data Interpolation with Multilevel B-Splines", IEEE Transactions on Visualization and Computer Graphics archive , vol. 3, issue 3, 1997 , pp. 228-244.
[20]P. Lancaster and K. Salkauskas "Surfaces generated by moving least squares methods", Math. Comp, 1981, pp. 141-158.
[21]I.K. Grain, "Computer interpolation and contouring of two-dimensional data: A review", Geoexploration, vol. 8, issue 2, 1970, pp. 71–86.
[22]Keim. D. A. and Herrmann. A, "The Gridfit algorithm: an efficient and effective approach to visualizing large amounts of spatial data", Visualization ''98. Proceedings, 1998, pp.181-188.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top