(34.239.150.57) 您好!臺灣時間:2021/04/19 00:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉羽欣
研究生(外文):Yu-Hsin Liu
論文名稱:產品行銷廣告文之分類與特徵分析
論文名稱(外文):Feature extraction and classification of product advertising review
指導教授:王正豪王正豪引用關係
指導教授(外文):Jenq-Haur Wang
口試委員:楊凱翔劉傳銘
口試日期:2013-07-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資訊工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:42
中文關鍵詞:文件分類廣告文特徵擷取
外文關鍵詞:Document ClassificationAdvertising reviewsfeature extraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:401
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
伴隨著網路蓬勃發展,網路早已成為各大廠商所注重的行銷通路,因此開始有廠商贈予商品或是稿費請部落客或民眾在網路上撰寫產品使用文章以推銷該品牌之產品。此類文章數量越來越龐大,但是文章的真實性難以驗證,是否產品確實如廣告文內容描述之效果,或是因為筆者為獲取稿費而對產品的評論帶有偏頗,以傳統文件內容分類的方法可能無法有效評斷。
因此,本論文提出一個產品廣告文特徵擷取方法及分類模型,透過文章中正面情緒詞比例、總字數、圖片數量、稱讚詞比例、發表日期等特徵以訓練SVM分類模型。實驗中針對網誌美妝產品評論文章2150篇進行分類,結果對於一般文章與美妝廣告文章的分類效果F-measure為94%,與傳統的文件分類方法TF-IDF不相上下,效率卻高了許多。對於美妝非廣告文與美妝廣告文之分類本論文提出之方法亦可達一良好準確度,顯示了此方法的實用性。


Web has become an important place for marketing in business. Many vendors offer bloggers or people their products or payment and ask them to write review of product using experience to promote their products. However, it’s hard to identify the truthfulness of these reviews. By using conventional text classification methods by content, it is difficult to distinguish between real and fake reviews.
In this paper, we propose a feature extraction method and classification model for advertising reviews. Based on features like ratio of positive opinion terms, number of pictures, ratio of praiseful words, and publishes date; we train a SVM classifier for advertising review identification. In our experiment, we collected 2150 reviews in the “cosmetics” domain. For classifying advertising reviews in cosmetics domain and other articles, our method can perform 94% at F-measure. This result is comparable to the conventional approach of document classification using TF-IDF, and our method is more efficient in training. For classifying advertising and ordinary non-advertising reviews in cosmetics domain, our method also can achieve good classification accuracy. It shows the feasibility of practical use in advertising reviews classification.


摘要 i
ABSTRACT ii
致 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章、緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 論文架構 4
第二章 相關研究 5
2.1 網路口碑行銷 5
2.2 廣告評論分類 6
第三章 研究方法 10
3.1 系統架構 10
3.2 前處理 11
3.2 特徵擷取 11
3.3 文件分類 15
第四章 實驗資料與結果 16
4.1 實驗資料 16
4.1.1 部落格評論 16
4.1.2 UrCosme討論區評論 20
4.1.3 實驗所需其他所需資料 23
4.1.3.1商品介紹的資料 23
4.1.3.2 稱讚詞資料 24
4.1.3.3 其他廣告文發表日期資料 25
4.2 實驗結果 25
4.2.1 實驗一:分類美妝保養類廣告文評論與其他文章 25
4.2.2 實驗二:分類美妝保養類廣告文評論與美妝保養類非廣告文評論(部落格) 28
4.2.3 實驗三:分類UrCosme美妝保養類廣告文與美妝保養類非廣告文 31
4.3 討論 34
第五章 結論與未來展望 38
參考文獻 40


[1]BIGresearch,87% of Consumers Research Products Online, Buy Offline,(2006)取自http://www.internetretailer.com/2006/07/13/87-of-consumers-research-prod
ucts-online-buy-offline
[2]維基百科,三星寫手門事件,(2013)取自http://zh.wikipedia.org/wiki/%E4%B8%89%E6%98%9F%E5%AF%AB%E6%89%8B%E9%96%80%E4%BA%8B%E4%BB%B6
[3]蘋果日報專案組、法庭中心,蘋果臥底 揭網路寫手 滲透56論壇,2013年07月05日,取自http://www.appledaily.com.tw/appledaily/article/headline/20130705/35128572/
[4]朱楚文,部落客不能說的秘密-揭開置入性行銷的神秘面紗,碩士論文,國立台灣大學社會科學院新聞研究所,臺北,2010。
[5]顧庭芳,部落客撰寫廣告文之情境倫理研究,碩士論文,天主教輔仁大學大眾傳播學研究所,臺北,2010。
[6]Nitin Jindal, Bing Liu, “Opinion Spam and Analysis”, Proceedings of the international conference on Web search and web data mining, Palo Alto, California, USA , Feb 11-12, 2008, pp.219-230.
[7]Myle Ott, Yejin Choi, Claire Cardie, Jeffrey T. Hancock, “Finding Deceptive Opinion Spam by Any Stretch of the Imagination”, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Oregon, June 19-24, 2011, pp309-319.
[8]Sylvain Senecal , Jacques Nantel, “The Influence of Online Product Recommendations on Consumers’ Online Choices”, Journal of Retailing, vol. 80, 2004, pp.159–169
[9]Dimensional research,The Impact of Customer Service on Customer Lifetime Value,(2013),取自http://www.zendesk.com/resources/customer-service-and-lifetime-customer-value
[10]Chrysanthos Dellarocas, “Strategic Manipulation of Internet Opinion Forums:Implications for Consumers and Firms”, Management Science, 2006, Vol. 52 No. 10, Oct, 2006, pp.1577-1593.
[11]邱于平,部落格口碑對消費者購買決策影響之研究,碩士論文,國立臺灣師範大學圖文傳播學系,臺北,2009。
[12]張家瑜,美妝部落格部落客專業性、吸引力及關係程度對瀏覽者產品態度影響之研究-以訊息信任為中介變項,碩士論文,中華大學經營管理研究所,新竹,2010。
[13]張馨文,網誌廣告化程度與內容可信度之研究,碩士論文,中國文化大學新聞學系,臺北,2009。
[14]Nitin Jindal, Bing Liu, “Review Spam Detection”, Proceedings of the 16th international conference on World Wide Web, Banff, Alberta, Canada, May 8-12, 2007, pp.1189-1190.
[15]Fangtao Li, Minlie Huang, Yi Yang, Xiaoyan Zhu, “Learning to Identify Review Spam”, Proceedings of the Twenty-Second international joint conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pp.2488-2493.
[16]Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu, Hady Lauw, “Detecting Product Review Spammers Using Rating Begaviors”, Proceedings of the 19th ACM International Conference on Information and Knowledge Management(CIKM-2010, full paper), Toronto, Canada, Oct 26 - 30, 2010, pp.939-948.
[17]Nitin Jindal, Bing Liu, Ee-Peng Lim. “Finding Unusual Review Patterns Using Unexpected Rules”, Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM-2010, short paper), Toronto, Canada, Oct 26 - 30, 2010, pp.1549-1552.
[18]Guan Wang, Sihong Xie, Bing Liu, Philip S. Yu. “Review Graph Based Online Store Review Spammer Detection”, Proceedings of Data Mining (ICDM), 2011 IEEE 11th International Conference on. IEEE, Vancouver, Canada, Dec 11-14, 2011, pp.131-142.
[19]Geli Fei, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos, Riddhiman Ghosh, “Exploiting Burstiness in Reviews for Review Spammer Detection”, Proceedings of The International AAAI Conference on Weblogs and Social Media (ICWSM-2013), Boston, USA, July 8-10, 2013, pp.175-184.
[20]Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Natalie Glance, “What Yelp Fake Review Filter Might Be Doing?”, Proceedings of The International AAAI Conference on Weblogs and Social Media (ICWSM-2013), Boston, USA, July 8-10, 2013.
[21]Arjun Mukherjee, Bing Liu, Junhui Wang, Natalie Glance, Nitin Jindal, “Detecting Group Review Spam”, Proceedings of the 20th international conference companion on World wide web, Hyderabad, India, March 28-April 01, 2011, pp.93-94.
[22]Arjun Mukherjee, Bing Liu, Natalie Glance, “Spotting Fake Reviewer Groups in Consumer Reviews”, Proceedings of International World Wide Web Conference (WWW-2012), Lyon, France, April 16-20, 2012.
[23]Myle Ott, Claire Cardie, Jeffrey T. Hancock, “Negative Deceptive Opinion Spam”, Proceedings of NAACL-HLT 2013, Atlanta, Georgia, June 9–14, 2013, pp.497-501.
[24]中央研究院中文斷詞系統,http://ckipsvr.iis.sinica.edu.tw/
[25]中央研究院平衡語料庫詞集及詞頻統計,http://rocling.iis.sinica.edu.tw/CKIP/
[26]Lun-Wei Ku and Hsin-Hsi Chen (2006~). Tools and Annotated Corpora for Opinionated Tasks. http://nlg18.csie.ntu.edu.tw:8080/opinion/index.html
[27]Gurmeet Singh Manku, Arvind Jain, Anish Das Sarma, “Detecting Near-duplicates for Web Crawling”, Proceedings of the 16th international conference on World Wide Web, , Banff, Alberta, Canada, May 08-12, 2007, pp.141-150.
[28]Google Custom Search,https://developers.google.com/custom-search/


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔