跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俊辰
研究生(外文):Chun-Chen Lin
論文名稱:應用均流變壓器於全數位化之非隔離型多組輸入燒機測試平台
論文名稱(外文):Applying Current-Sharing Transformer to Fully-Digitalized Non-Isolated Multi-Input Burn-In Test Plant
指導教授:胡國英
指導教授(外文):Kuo-Ing Hwu
口試委員:姚宇桐俞齊山
口試委員(外文):Yeu-Torng YauChi-Shan Yu
口試日期:2012-10-02
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:136
中文關鍵詞:燒機測試均流變壓器多組輸入
外文關鍵詞:Burn-In TestCurrent-Sharing TransformerMultiple Input
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係結合均流變壓器來建構一多組輸入之非隔離型燒機測試平台,以回收部分燒機時所消耗的能量。該架構具有四組輸入端,可讓四組降壓式非隔離型轉換器同時進行燒機測試,以縮短燒機測試的時間,提高產線運作效率。藉由均流變壓器可使得電流平均分布於各通道間,不須額外加入主動控制即可達成均流之目的。除此之外,本論文將分析兩通道之電路動作行為及輸入電壓差異、電感值差異時的電路現象,並以模擬與實作來驗證兩通道與四通道之可行性與有效性。順便一提的是,本論文採用現場可規劃邏輯閘陣列(Field Programmable Gate Array, FPGA)為系統之控制核心,並透過超高速硬體描述語言(Very High Speed Integrated Circuit Hardware Description Language, VHDL)來撰寫程式,以實現全數位化控制。

In this thesis, the current-sharing transformer is used to mainly construct the multiple-input non-isolated burn-in test plant. This plant has four input terminals, i.e. four channels, so as to recycle part of the energy required by the burn-in testing of four buck-type DC-DC converters simultaneously. By doing so, the time required is shortened, and hence the performance of the production line would be enhanced. Above all, using the current-sharing transformer makes the currents in all channels as equal as possible, thereby implying that there is no active current-sharing control to be required. Furthermore, the behavior of the two-channel circuit considering variations in input voltage and variations in inductance is to be analyzed, and sequentially some simulated and experimental results are provided to verify the feasibility and effectiveness of the two and four channels. By the way, the field programmable gate array (FPGA), together with the very high speed integrated circuit hardware description language (VHDL), is used as a system control kernel, so as to realize fully-digitalized control.

目 錄

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究方法 12
1.3 論文內容架構 13
第二章 基於電荷幫浦及雙升壓電感之高升壓轉換器 14
2.1 前言 14
2.2 轉換器之符號定義與假設 14
2.3 轉換器之動作原理與升壓比 17
2.4 轉換器之直流分析與邊界條件 22
第三章 所提之燒機測試平台電路分析 26
3.1 前言 26
3.2 雙輸入燒機測試平台之電路分析 26
3.2.1 雙輸入燒機測試平台之符號定義及假設 26
3.2.2 雙輸入燒機測試平台之輸入電壓差異分析 30
3.2.2.1 狀況(i):Vi1等於Vi2 30
3.2.2.2 狀況(ii):Vi1大於Vi2 34
3.2.3 雙輸入燒機測試平台之電感差異分析 42
3.2.3.1 狀況(i):LC1等於LC2 42
3.2.3.2 狀況(ii):LC1大於LC2 42
3.3 四輸入燒機測試平台電路分析 50
3.3.1 四輸入燒機測試平台之符號定義及假設 50
3.3.2 四輸入燒機測試平台之電路動作分析 55
第四章 硬體電路設計 61
4.1 前言 61
4.2 系統架構 61
4.3 待測物規格 63
4.4 能量回收電路規格 63
4.5 能量回收電路設計 64
4.5.1 耦合電感設計 64
4.5.2 能量傳遞電容與輸出電容設計 71
4.5.2.1 能量傳遞電容設計 71
4.5.2.2 輸出電容設計 71
4.5.3 均流變壓器設計 72
4.5.4 二極體與功率開關之選配 74
4.5.4.1 二極體之選配 74
4.5.4.2 功率開關之選配 75
4.6 回授與控制電路設計 76
4.6.1 以比較器為基礎之取樣電路設計 76
4.6.1.1 差動放大器之參數設計 77
4.6.1.2 低通濾波器之參數設計 78
4.6.1.3 鋸齒波產生器之參數設計 78
4.6.2 驅動電路設計 80
第五章 數位化控制設計 81
5.1 前言 81
5.2 VHDL程式簡介 81
5.2.1 Library宣告區 82
5.2.2 Use宣告區 82
5.2.3 Entity宣告區 82
5.2.4 Architecture宣告區 83
5.2.5 物件模式與型別 83
5.3 程式動作流程 84
5.3.1 回授計數取樣模組 86
5.3.2 PID運算模組 88
5.3.3 DPWM模組 93
第六章 模擬與實作結果 94
6.1 前言 94
6.2 電路模擬結果 94
6.2.1 雙輸入燒機測試平台之模擬結果 97
6.2.2 四輸入燒機測試平台之模擬結果 103
6.2.3 模擬結果小結 105
6.3 實驗波形 105
6.3.1 雙輸入燒機測試平台之實驗波形 105
6.3.2 四輸入燒機測試平台之實驗波形 113
6.3.3 實驗波形小結 118
6.3.4 效率量測 118
6.3.5 能量回收率 119
第七章 結論與未來展望 123
7.1 結論 123
7.2 未來展望 123
參考文獻 125


參考文獻

[1]維基百科 http://zh.wikipedia.org/wiki/Wikipedia:%E9%A6%96%E9%A1%B5
[2]Takao Kawabata, Nobuo Sashida, Yushin Yamamoto, Kouji Ogasawara and Yuko Yamasaki, “Parallel processing inverter system,” IEEE Transactions on Power Electronics, vol. 6, no. 3, pp. 442-450, 1991.
[3]Jiann-Fuh Chen, Ching-Lung Chu, Tsu-Hua Ai and Ching-Lien Huang, “The burn-in test of three-phase UPS by energy feedback method,” IEEE PESC’93, pp. 766-771, 1993.
[4]Suresh Gupta, Vidya Rangaswamy and Richard Ruth, “Load bank elimination for UPS testing,” IEEE IAS’90, vol. 2, pp. 1040-1043, 1990.
[5]Carlos Augusto Ayres and Ivo Barbi, “A family of converters for power recycling during UPS''s burn-in test,” IEEE PESC’95, vol. 1, pp. 486-492, 1995.
[6]Carlos Augusto Ayres and Ivo Barbi, “CCM operation analysis of a family of converters for power recycling during the burn-in test of synchronized UPSs,” IEEE PESC’96, vol. 2, pp. 986-992, 1996.
[7]Carlos Augusto Ayres and Ivo Barbi, “A family of converters for UPS production burn-in energy recovery,” IEEE Transactions on Power Electronics, vol. 12, no. 4, pp. 615-622, 1997.
[8]Ming-Tsung Tsai and Charles Tsai, “Energy recycling for electrical AC power source burn-in test,” IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 974-976, 2000.
[9]Yufei Zhou, Lei Wang and Xin Chen, “Research on digital controlled converter for AC power electronics burn-in test with Energy Feedback,” IEEE ICEMS’08, pp. 1946-1951, 2008.
[10]Xu She, Yun She, Chengzhi Wang, Jian Tang, Fen Li and Yunping Zou, “Unified power electronic load for burn-in test,” IEEE IPEMC’09, pp. 1803-1807, 2009.
[11]Huang Zhaoxia, Zou Xudong, Li Fen, Zou Yunping and Tong Li, “A novel filter for harmonics and inter-harmonics analysis and suppression in AC electronic load,” IEEE ICPE & ECCE’11, pp. 770-777, 2011.
[12]M. T. Tsai, “Comparative investigation of the energy recycler for power electronics burn-in test,” IEE Proceedings of Electric Power Applications, vol. 147, no. 3, pp. 192-198, 2000.
[13]M. T. Tsai, T. J. Cheng and Charles Tsai, “High-efficiency energy recycling system for AC power source burn-in test,” IEEE PEDS’99, vol. 1, pp. 291-296, 1999.
[14]Shyh-Jier Huang and Fu-Sheng Pai, “A new approach of circulating current method for UPS testing with energy recovery,” IEEE PESS’02, vol. 3, pp. 1418-1422, 2002.
[15]Shyh-Jier Huang and Fu-Sheng Pai, “Design and operation of burn-in test system for three-phase uninterruptible power supplies,” IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 256-263, 2002.
[16]B. W. Franca, L. F. da Silva and M. Aredes, “A novel predictive controller and experimenntal analysis of a power electronic load,” IEEE COBEP’11, pp. 715-719, 2011.
[17]C. E. Lin, M. T. Tsai, W. I. Tsai and C. L. Huang, “A study on the burn-in test of charger with load bank elimination,” IEEE IAS’95, pp. 72-77, 1995.
[18]C. E. Lin, M. T. Tsai, W. I. Tsai and C. L. Huang, “Consumption power feedback unit for power electronics burn-in test,” IEEE IECON’95, vol. 1, pp. 284-289, 1995.
[19]Carlos Augusto Ayres and Ivo Barbi, “Power recycler for DC power supplies burn-in test: design and experimentation,” IEEE APEC’96, vol. 1, pp. 72-78, 1996.
[20]Chin-E Lin, Ming-Tsung Tsai, Wen-Inne Tsai and Ching-Lien Huang, “Consumption power feedback unit for power electronics burn-in test,” IEEE Transactions on Industrial Electronics, vol. 44, no. 2, pp. 157-166, 1997.
[21]B. O''Sullivan, R. Morrison, M. G. Egan, J. Slowey and B. Barry, “A regenerative load system for the test of Intel VRM 9.1 compliant modules,” IEEE APEC’04, vol. 1, pp. 298-303, 2004.
[22]D. F. B. Gomes, R. S. F. Vincenzi, C. Bissochi Jr, J. B. Vieira Jr, V. J. Farias and L. C. Freitas, “A lossless commutated boost converter as an active load for burn-in application,” IEEE APEC’01, vol. 2, pp. 953-958, 2001.
[23]K. I. Hwu, Y. H. Chen and Y. H. Hsieh, “A nonisolated voltage-boosting converter with high voltage ratio suitable for an active load,” IEEE TENCON’07, pp. 1-4, 2007.
[24]K. I. Hwu and Y. H. Chen, “Design of a digitalized burn-in test plant,” IEEE ICSET’08, pp. 415-419, 2008.
[25]K. I. Hwu and Y. T. Yau, “Active load for burn-in test of buck-type DC-DC converter with ultra-low output voltage,” IEEE APEC’08, pp. 635-638, 2008.
[26]K. I. Hwu, Y. T. Yau and Jenn-Jong Shieh, “High step-up converter based on coupling inductor and charge pump with active voltage clamping,” IEEE ICEICE’11, pp. 2241-2244, 2011.
[27]Karteek Gummi and Mehdi Ferdowsi, “Derivation of new double-input DC-DC converters using H-Bridge cells as building blocks,” IEEE IECON’08, pp. 2806-2811, 2008.
[28]N. Messi Bene Eloundou, F. Gustin and A. Berthon, “Multi-source high frequency Link DC-DC converter for EV or HEV applications,” IEEE IPEMC’09, pp. 1282-1287, 2009.
[29]R. Noroozian, M. Abedi, G. B. Gharehpetian and A. Bayat, “On-grid and off-grid operation of multi-input single-output DC/DC converter based fuel cell generation system,” ICEE’10, pp. 753-758, 2010.
[30]Venkata Anand K. Prabhala, Deepak Somayajula and Mehdi Ferdowsi, “Power sharing in a double-input buck converter using dead-time control,” IEEE ECCE’09, pp. 2621-2626, 2009.
[31]Y.-M. Chen, Y.-C. Liu and F.-Y. Wu, “Multi-input DC/DC converter with ripple-free input currents,” IEEE PESC’02, vol. 2, pp. 796-802, 2002.
[32]A. Di Napoli, F. Crescimbini, F. Giulii Capponi and L. Solero, “Control strategy for multiple input DC-DC power converters devoted to hybrid vehicle propulsion systems,” IEEE ISIE’02, vol. 3, pp. 1036-1041, 2002.
[33]H. Tao, A. Kotsopoulos, J. L. Duarte and M. A. M. Hendrix, “Multi-input bidirectional DC-DC converter combining DC-link and magnetic-coupling for fuel cell systems,” IEEE IAS’05, vol. 3, pp. 2021-2028, 2005.
[34]R. J. Wai, C. Y. Lin, L. W. Liu and Y. R. Chang, “High-efficiency single-stage bidirectional converter with multi-input power sources,” IET Electric Power Applications, vol. 1, no. 5, pp. 763-777, 2007.
[35]H. Krishnaswami and N. Mohan, “Constant switching frequency series resonant three-port bi-directional DC-DC converter,” IEEE PESC’08, pp. 1640-1645, 2008.
[36]Klaus Rigbers and Rik W. De Doncker, “High efficient galvanically isolated resonant multi-input DC-DC converter topology,” IEEE PESC’08, pp. 4138-4141, 2008.
[37]Deepak Somayajula and Mehdi Ferdowsi, “Power sharing in a double-input buckboost converter using offset Time control,” IEEE APEC’09, pp. 1091-1096, 2009.
[38]Zhihao Li, Omer Onar, Alireza Khaligh and Erik Schaltz, “Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system,” IEEE APEC’09, pp. 591-596, 2009.
[39]Bong-Chul Kim, Ki-Bum Park, Chong-Eun Kim and Gun-Woo Moon, “Load sharing characteristic of two-phase interleaved LLC resonant converter with parallel and series input structure,” IEEE ECCE’09, pp. 750-753, 2009.
[40]S. H. Hosseini, S. Danyali, F. Nejabatkhah and S. A. KH. Mozafari Niapoor, “Multi-input DC boost converter for grid connected hybrid PV/FC/Battery power system,” IEEE EPEC’10, pp. 1-6, 2010.
[41]Zhijun Qian, Osama Abdel-Rahman, Haibing Hu and Issa Batarseh, “Multi-channel three-port DC/DC converters as maximum power tracker, battery charger and bus regulator,” IEEE APEC’10, pp. 2073-2079, 2010.
[42]Rong-Jong Wai, Chung-You Lin, Jun-Jie Liaw and Yung-Ruei Chang, “Newly designed ZVS multi-input converter,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 555-566, 2011.
[43]Wei Jiang and Babak Fahimi, “Multiport power electronic interface-concept, modeling, and design,” IEEE Transactions on Power Electronics, vol. 26, no. 7, pp. 1890-1900, 2011.
[44]Isaac Zafrany and Sam Ben-Yaakov, “Average modeling, analysis and simulation of current shared DC-DC converters,” IEEE PESC’98, vol. 1, pp. 640-646, 1998.
[45]V. Joseph Thottuvelil and George C. Verghese, “Analysis and control design of paralleled DC/DC converters with current sharing,” IEEE Transactions on Power Electronics, vol. 13, no. 4, pp. 635-644, 1998.
[46]Yuri Panov and Milan M. Jovanovi’c, “Loop gain measurement of paralleled DC–DC converters with average-current-sharing control,” IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 2942-2948, 2008.
[47]J. Rajagopalan, K. Xing, Y. Guo, F. C. Lee and Bruce Manners, “Modeling and dynamic analysis of paralleled DC/DC converters with master-slave current sharing control,” IEEE APEC’96, vol. 2, pp. 678-684, 1996.
[48]Y. Panov, J. Rajagopalan and F. C. Lee, “Analysis and design of N paralleled DC-DC converters with master-slave current-sharing control,” IEEE APEC’97, vol. 1, pp. 436-442, 1997.
[49]Herbert H. C. Iu and Chi K. Tse, “Instability and bifurcation in parallel-connected buck converters under a master-slave current sharing scheme,” IEEE PESC’00, vol. 2, pp. 708-713, 2000.
[50]K. I. Hwu and Y. H. Chen, “Current sharing control strategy based on phase link,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 701-713, 2012.
[51]K. I. Hwu and Sheng-Chien Chou, “A simple current-balancing converter for LED lighting,” IEEE APEC’09, pp. 587-590, 2009.
[52]Junming Zhang, Jianfeng Wang and Xinke Wu, “A capacitor-isolated LED driver with inherent current balance capability,” IEEE Transactions on Industrial Electronics, vol. 59, no. 4, pp. 1708-1716, 2012.
[53]Sungjin Choi and Taehoon Kim, “Symmetric current-balancing circuit for LED backlight with dimming," IEEE Transactions on Industrial Electronics, vol. 59, no. 4, pp. 1698-1707, 2012.
[54]K. I. Hwu and Y. H. Chen, “Applying differential-mode transformer to current sharing with current ripple considered,” IEEE Transactions on Industrial Electronics, vol. 58, no. 7, pp. 2755-2771, 2011.
[55]K. I. Hwu and Y. H. Chen, “Simple current sharing control based on differential-mode transformer,” IEEE APEC’11, pp. 1803-1810, 2011.
[56]Zhaohui Wang, Xinke Wu, Min Chen and Junming Zhang, “Optimal design methodology for the current-sharing transformer in a quasi-resonant (QR) flyback LED driver,” IEEE APEC’12, pp. 2372-2378, 2012.
[57]K. I. Hwu and Y. T. Yau, “High Step-Up Converter Based on Charge Pump and Boost Converter,” IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2484-2494, 2012.
[58]王彰慶,具節能之數位化燒機測試平台之研製,碩士論文,國立臺北科技大學電機工程系,2007。
[59]周勝千,應用新穎的電流均衡電路於LED照明,碩士論文,國立臺北科技大學電機工程系,2008。
[60]陳益弘,多相切換式轉換器之均流控制之研製,博士論文,國立臺北科技大學電機工程系,2011。
[61]洪明傑,以DSP為基礎之具低均流誤差之LED電流平衡驅動器,碩士論文,國立臺北科技大學電機工程系,2011。
[62]Ned Mohan, Tore M. Undeland and William P. Robbins, Power Electronics, 3nd ed., New York: John Wiley & Sons, 2003.
[63]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., Norwell: Kluwer Academic Publishers, 2001.
[64]賈證主,VHDL數位系統設計與應用,台北:台科大圖書股份有限公司,2004。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top