跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏元
研究生(外文):Bo-Yuan Chen
論文名稱:全橋直流-直流轉換器之脈波寬度調變技術的研製
論文名稱(外文):Design and Implementation of PWM Control Techniques for the Full-Bridge DC/DC Converter
指導教授:賴炎生
口試委員:歐勝源黃明熙陳耀銘陳建富楊宏澤
口試日期:2012-09-03
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:電機工程系博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:109
中文關鍵詞:相移控制全橋直流-直流轉換器脈波寬度調變諧波擴散因數
外文關鍵詞:Phase-shift controlled full-bridge DC/DC converterPulse-width modulationHarmonic spread factor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在發展全橋直流-直流轉換器之脈波寬度調變技術。本論文提出適用於全橋直流-直流轉換器的切換控制技術以達成減少待機及輕載損耗以及一種考量效率並且可降低諧波強度的新型隨機脈波寬度調變技術。首先,利用狀態空間平均法建立連續時間下的全橋直流-直流轉換器數學模型,並藉由電路小訊號模型,設計控制器並以FPGA系統實現數位化控制之全橋直流-直流轉換器。其次,本文分析相移控制之全橋直流-直流轉換器的零電壓切換條件及全橋直流-直流轉換器在傳統脈波寬度控制及相移控制下的功率損耗。並且由分析的結果發展出一種新型切換控制技術,以改善待機及輕載損耗,再以實測結果驗證理論分析。
最後,本文提出一隨機脈波寬度調變技術以改善全橋直流-直流轉換器造成的諧波,其中並考量對於效率之影響,利用pseudo隨機程序產生器改變切換頻率,藉此有效的打散伴隨高頻切換造成之高頻諧波,並由模擬及實驗結果驗證此技術之有效性。


The main theme of this dissertation is to develop PWM control techniques for full-bridge DC/DC converter. A new switching control technique that can improve light load and standby power losses of phase-shift controlled full-bridge DC/DC converter is proposed. Furthermore, a new random PWM control technique is proposed to reduce the harmonics intensity while considering the efficiency. First, the continuous time-domain model of full-bridge DC/DC converter is established by state space average method. Based on the converter model, the digital controller is designed and implemented by an FPGA system. After that, ZVS condition for phase-shift control method and power losses for full-bridge DC/DC converter with PWM and phase-shift control are analyzed. According to the analyzed results, a switching control technique is developed to improve light load and stand by power losses. The results are verified by experimental results.
Finally, a new random PWM technique is presented. The proposed technique can reduce the harmonic intensity of full-bridge DC/DC converter while considering the efficiency. The proposed method uses pseudo random binary sequence generator to generate random bits to change switching frequencies to effectively spread the dominate harmonics. The effectiveness of the proposed techniques is verified by both simulation and experimental results.


ABSTRACT i
摘 要 iii
誌 謝 iv
Table of Contents v
List of Illustrations viii
List of Tables xv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 2
1.2.1 Full-Bridge DC/DC Converter with Phase-Shift Control 2
1.2.2 PWM Techniques for Full-Bridge DC/DC Converter 5
1.3 Objectives and Contributions 6
1.4 Organization 7
Chapter 2 Modeling of Full-Bridge DC/DC Converter 8
2.1 Operation Principle 8
2.1.1 PWM Controlled Full-Bridge DC/DC Converter 8
2.1.2 Phase-Shift Controlled Full-Bridge DC/DC Converter 12
2.1.2.1 Analysis of Zero-Voltage-Switching (ZVS) Characteristics 17
2.1.2.2 Analysis of Circulating Current 19
2.2 Modeling of PWM Controlled Full-Bridge DC/DC Converter 21
2.3 Modeling of Phase-Shift Controlled Full-Bridge DC/DC Converter 27
2.4 Summary 32
Chapter 3 Switching Control Technique of Full-Bridge DC/DC Converter 33
3.1 Switching Loss Analysis of Phase-Shift Controlled Full-Bridge DC/DC Converter 34
3.2 Proposed Switching Control Technique 39
3.2.1 Switching Control Technique 39
3.2.2 Transition among Proposed Switching Control Modes 42
3.2.3 Loss Analysis of Proposed Switching Control Technique 44
3.3 Simulation and Experimental Results 46
3.4 Summary 55
Chapter 4 Random PWM Technique for Full-Bridge DC/DC Converter with Harmonic Intensity Reduction and Considering Efficiency 57
4.1 Prior Arts of Random PWM Techniques 58
4.1.1 Conventional PWM Switching Technique 58
4.1.2 Random Carrier Frequency 60
4.1.3 Constant Carrier Frequency 61
4.2 Test Bench of Full-Bridge Converter 64
4.3 Survey on PWM Switching Techniques 66
4.3.1 Description of Switching Techniques 66
4.3.2 Circulating Loss Analysis of PWM Techniques 70
4.3.3 Experimental Evaluation of PWM Techniques 72
4.4 Proposed Random PWM Technique 78
4.4.1 Proposed New Random PWM Technique 78
4.4.2 Pseudo Random Binary Sequence Generator 82
4.4.3 Analysis of Harmonic Characteristics of PWM Techniques 83
4.4.4 Experimental Evaluation of Proposed New Random PWM Technique 87
4.5 Summary 93
Chapter 5 Conclusions and Further Studies 94
5.1 Conclusions 94
5.2 Further Studies 95
References 97
Appendix I Agilent 4395A Test Set Up 103
Nomenclature 104
Vita 107
Publication List 108


[1]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Application and Design, 2nd edition, John Wiley & Sons, INC, New York, 1995.
[2]S. Buso and P. Mattavelli, Digital Control in Power Electronics, San Rafael, CA: Morgan & Claypool, 2006.
[3]F. L. Luo, H. Ye, and M. Rashid, Digital Power Electronics and Applications, San Diego, CA : Elsevier, 2005.
[4]J. A. Sabate, V. Vlatkovic’, R. B. Ridley, and F. C. Lee, “High-voltage, high-power, ZVS, full-bridge PWM converter employing an active snubber,” in Proc. of the IEEE APEC, 1991, pp. 158–163.
[5]R. Redl, N. O. Sokal, and L. Balogh, “A novel soft-switching full-bridge dc–dc converter: Analysis, design considerations, at 1.5 kW, 100 kHz,” IEEE Trans. on Power Electronics, vol. 6, no. 4, Jul. 1991, pp. 408–418.
[6]W. Chen, F. C. Lee, M. M. Jovanovic’, and J. A. Sabate, “A comparative study of a class of full bridge zero-voltage-power devices PWM converters,” in Proc. of the IEEE APEC, 1995, pp. 893–899.
[7]H. F. Xiao and S. J. Xie, “A ZVS bidirectional DC–DC converter with phase-shift plus PWM control scheme,” IEEE Trans. on Power Electronics, vol. 23, no. 2, March 2008, pp. 813–823.
[8]A. J. Mason, D. J. Tschirhart, and P. K. Jain, “New ZVS phase shift modulated full-bridge converter topologies with adaptive energy storage for SOFC application,” IEEE Trans. on Power Electronics, vol. 23, no. 1, Jan. 2008, pp. 332-342.
[9]Z. Chen, X. Wu, P. Meng, and Z. Qian, “Optimum design consideration and implementation of a novel synchronous rectified soft-switched phase-shift full-bridge converter for low-output-voltage high-output-current applications,” IEEE Trans. on Power Electronics, vol. 24, no. 2, Feb. 2009, pp. 388-397
[10]X. Wu, X. Xie, J. Zhang, R. Zhao, and Z. Qian, “Soft switched full bridge DC–DC converter with reduced circulating loss and filter requirement,” IEEE Trans. on Power Electronics, vol. 22, no. 5, Sep. 2007, pp. 1949-1955.
[11]Y. Jang and M. M. Jovanovic’, “A new PWM ZVS full-bridge converter,” IEEE Trans. on Power Electronics, vol. 22, no. 3, May. 2007, pp. 987–994.
[12]P. K. Jain, W. Kang, H. Soin, and Y. Xi, “Analysis and design considerations of a load and line independent zero voltage switching full-bridge DC/DC converter topology,” IEEE Trans. on Power Electronics, vol. 17, no. 5, Sep. 2002, pp. 649–657.
[13]X. Wu, X. Xie, Chen Zhao, Z. Qian, and R. Zhao, “Low voltage and current stress ZVZCS full bridge DC-DC converter using center tapped rectifier reset,” IEEE Trans. on Industrial Electronics, vol. 55, Mar. 2008, pp. 1470–1477.
[14]W. J. Lee, C. E. Kim, G. W. Moon, and S. K. Han, “A new phase-shift full-bridge converter with voltage-doubler-type rectifier for high-efficiency PDP sustaining power module,” IEEE Trans. on Industrial Electronics, vol. 55, Jun. 2008, pp. 2450–2458.
[15]Standby power use and the IEA “1-watt plan” – fact sheet, International Energy Agency, 2007.
[16]B. J. Culpepper and H. Suzuki, “Switching DC-to-DC converter with discontinuous pulse skipping and continuous operating mode without external sense resistor,” US patent 6396252, National Semiconductor, May 2002.
[17]Y. K. Lo, S. C. Yen, and C. Y. Lin, “A high-efficiency AC-to-DC adaptor with a low standby power consumption,” IEEE Trans. on Industrial Electronics, Vol. 55, Issue 2, Feb. 2008, pp. 963 - 965.
[18]H. S. Choi and D. Y. Huh, “Techniques to minimize power consumption of SMPS in standby mode,” in Proc. of the IEEE PESC, 2005, pp. 2817-2822.
[19]K. Y. Lee and Y. S. Lai, “Analysis and design of adapter met energy efficiency code under standby condition without using current sensor and hysteresis circuit for notebook computer applications,” in Proc. of the IEEE PESC, 2006.
[20]B. T. Huang, K. Y. Lee, and Y. S. Lai, “Design of a two-stage AC-DC converter with standby power losses less than 1 W,” in Proc. of the Power Conversion Conf., 2007, pp.1630 - 1635.
[21]K. I. Hwu, Y. T. Yau, and T. H. Chen, “Improvement in efficiency of the phase-shift current-doubler-rectification ZVS full-bridge DC-DC converter,” in Proc. of the IEEE APEC, 2007, pp. 991–997.
[22]R. Redl, L. Balogh, and D. W. Edwards, “Optimum ZVS Full-Bridge DC/DC Converter with PWM Phase-Shift Control: Analysis, Design Considerations, and Experimental Results,” in Proc. of the IEEE APEC, 1994, pp. 159-165
[23]C. R. Paul, Introduction to Electromagnetic Compatibility, JOHNWILEY & SONS, INC. 1992.
[24]R. Perez, Handbook of Electromagnetic Compatibility, ACADEMICPRESS, INC. 1995.
[25]L. Tihanyi, Electromagnetic Compatibility in Power Electronics, J. K. Eckert & Company, INC. 1995.
[26]P. S. Chen and Y. S. Lai, “Effective EMI filter design method for three-phase inverter based upon software noise separation,” IEEE Trans. on Power Electronics, Vol. 25, No. 11, Jun. 2010, pp. 2797 – 2806.
[27]Y. S. Lai and P. S. Chen, “New EMI filter design method for single phase power converter using software-based noise separation method,” in Proc. of the IEEE Industry Applications Annual Meeting, Sept. 2007, pp. 2282-2288.
[28]D. Jiang, R. Lai, F. Wang, F. Luo, S. Wang, and D. Boroyevich, “Study of conducted EMI reduction for three-phase active front-end rectifier,” IEEE Trans. on Power Electronics, Vol. 26, No. 12, Dec. 2011, pp. 3823-3831.
[29]H. Kham, E. H. Miliani, and K. E. K. Drissi, “Discontinuous random space vector modulation for electric drives: a digital approach,” IEEE Trans. on Power Electronics, Vol. 27, No. 12, Dec. 2012, pp. 4944-4951.
[30]J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. on Power Electronics, Vol. 25, No. 5, May 2010, pp. 1135-1148.
[31]Y. S. Lai and Y. T. Chang, “Design and implementation of vector-controlled induction motor drives using random switching technique with constant sampling frequency,” IEEE Trans. on Power Electronics, May 2001, pp. 400-409.
[32]Y. S. Lai, “New random technique of inverter control for common mode voltage reduction of inverter-fed induction motor drives,” IEEE Trans. on Energy Conversion, Dec. 1999, pp. 1139-1146.
[33]G. M. Dousoky and M. Shoyama, “Considerations for digital controllers targeted at conduced-noise spectrum-spreading in DC-DC convreters,” in Proc. of the International Power Electronics Conference, 2010, pp. 920-926.
[34]M. M. Bech, J. K. Pedersen, F. Blaabjerg, and A. M. Trzynadlowski, “A methodology for true comparison of analytical and measured frequency domain spectra in random PWM converters,” IEEE Trans. on Power Electronics, vol. 14, no. 3, May 1999, pp. 578-586.
[35]M. M. Bech, F. Blaabjerg, and J. K. Pedersen, “Random modulation techniques with constant switching frequency for three-phase power converters,” IEEE Trans. on Power Electronics, vol. 15, no. 4, Jul. 2000, pp. 753-761.
[36]K. K. Tse, S. H. Chung, S. Y. R. Hui, and H. C. So, “A comparative investigation on the use of random modulation schemes for DC-DC converters,” IEEE Trans. on Industrial Electronics, vol. 47, no. 2, Apr. 2000, pp. 253-263.
[37]Y. T. Chang, B. Y. Chen, and Y. S. Lai, “Novel random switching PWM technique with constant sampling frequency and constant inductor average current for digital-control converter,” in Proc. of the IEEE Energy Conversion Congress and Exposition (ECCE), 2011, pp. 2936 – 2943.
[38]D. Trevisan, P. Mattavelli, and S. Saggini, “Random switching frequency in a synchronous-asynchronous digital voltage-mode control for dc-dc converters,” in Proc. of the IEEE Research in Microelectronics and Electronics conference, 2006.
[39]D. Trevisan, P. Mattavelli, M. Zigliotto, and S. Saggini, “Limited-pool random carrier-frequency PWM for digitally controlled dc-dc converters,” in Proc. of the IEEE IECON conference, 2006.
[40]F. Mihalic, T. Bezjak, and M. Milanovic, “Random modulated boost converter with improved harmonic spectrum,” in Proc. of the IEEE ISIE conference, 1997.
[41]Y. C. Lim, S. O. Wi, J. N. Kim, and Y. G. Jung, “A pseudorandom carrier modulation scheme,” IEEE Trans. on Power Electronics, vol. 25, no. 4, Apr. 2010, pp. 797-805.
[42]M. Kuisma, “Variable frequency switching in power supply EMI-control: an overview,” IEEE Aerospace and Electronic Systems Magazine, Vol. 18, No. 12, 2003, pp. 18-22.
[43]K. S. Kim, Y. G. Jung, and Y. C. Lim, “A new hybrid random PWM scheme,” IEEE Trans. on Power Electronics, Vol. 24, no. 1, Jan. 2009 , pp. 192-200.
[44]Y. S. Lai, H. C. Huang, Y. S. Kuan, and C. M. Young, “A new random inverter control technique for motor drives,” in Proc. of the IEEE Applied Power Electronics Conference and Exposition (APEC), 1998 , pp. 101-107.
[45]J. K. Holmes, “Coherent spread spectrum systems,” Wiley, New York, 1982.
[46]R. S. Lai and K. D. T. Ngo, “A PWM method for reduction of switching loss in a full-bridge inverter,” IEEE Trans. on Power Electronics, Vol. 10, no. 3, May 1995, pp. 326-332.
[47]A. M. Stankovic, G. C. Verghese, and D. J. Perreault, “Analysis and synthesis of randomized modulation schemes for power converters,” IEEE Trans. on Power Electronics, Vol. 10, No. 6, Nov. 1995, pp. 680-693.
[48]Y. T. Chang, Design and Implementation of Digital Controlled DC-DC Converters, Ph.D. Thesis, National Taipei Univ. of Technology, 2009, Taiwan.
[49]C. A. Yeh, Design and Implementation of Digital-Controlled Current Mode Buck Converters, Ph.D. Thesis, National Taipei Univ. of Technology, 2010, Taiwan.
[50]R. W. Erickson and D. Maksimović, Fundamental of Power Electronics, 2nd ed. Norwell, MA: Kluwer, 2001.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top