( 您好!臺灣時間:2021/04/13 11:46
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Bing-Xian Yang
論文名稱(外文):Using fuzzy inference to analyze the associations between cortical thickness and Alzheimer''s disease
外文關鍵詞:Fuzzy inferenceMRIcortical thickness
  • 被引用被引用:3
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:1

Alzheimer''s disease is one of the dementia forms which has the highest prevalence at the age more than 65. It will cause the decrease of both memory and cognitive ability gradually and we still do not know its causes. In addition, it is also hard to find the disease till the patient shows visible symptoms, and for the families, the burden increases as the disease becomes more severe. However, due to the aging of the society, more and more elderly population are likely to develop Alzheimer''s disease. Hence if we could find some symptoms as early as possible, then we could predict it and slow down the rate of deterioration. In this study, we focus on the correlation between the cortical thickness and Alzheimer''s disease. We use the software named Freesurfer which was developed by Harvard to analyze the brain’s MRI (Magnetic Resonance Imaging). Through it, we can acquire the tissue’s segmentations and reconstruct it into 3D model. Successively, we can obtain the thickness data of the cortex. After that, we use the heat kernel smoothing to filter the thickness features and use the Min-Max diagram to compute the topology of homology, finally we use these results to construct a fuzzy inference system. Results show that the correlation of normal subjects is 32% and the correlation of patients is 73% and it proves the feasibility of proposed system.

摘 要 i
致謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 4
1.3 研究方法 4
1.4 論文架構 5
第二章 相關技術及應用探討 6
2.1 核磁共振影像(Magnetic Resonance Imaging) 6
2.2熱核平滑化(Heat Kernel Smoothing) 8
2.3 Min-Max Diagram 11
2.3.1演算法流程 11
2.3.2模擬實例 12
2.4模糊理論 13
2.4.1 模糊集合 14
2.4.2模糊歸屬函數 14
第三章 系統架構與設計 18
3.1 系統架構 18
3.2 模糊歸屬函數設計 19
3.2.1 模糊歸屬函數設計範例 23
3.3 開發環境 27
3.3.1 硬體規格 27
3.3.2 軟體版本 28 Freesurfer 28 Matlab 33 Microsoft Visual Studio 2010 C# 33 Cygwin 34
第四章 實驗結果與分析 36
4.1 實驗架構 36
4.2 Freesurfer重建結果 36
4.3 熱核平滑化(Heat Kernel Smooth)參數選擇 56
4.4 Matlab分析及模糊邏輯系統建立之結果 73
4.5 實驗結果 76
第五章 結論與未來展望 82
5.1 結論 82
5.2 未來展望 83
參考文獻 84

[1]內政部社會司, http://www.moi.gov.tw/dsa/index.aspx
[2]B. C. Dickerson and D. A. Wolk, “MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults,” Neurology, vol. 78, no. 2, pp.84-90, Jan. 2012.
[3]M. K. Chung, V. Singh, P. T. Kim, K. M. Dalton and R. J. Davidson, “Topological characterization of signal in brain images using min-max diagrams,” in Proc of Medical Image Computing and Computer Assisted Intervention, London, UK, part II, LNCS 5762, pp.158-166, 2009.
[4]M. K. Chung, S. M. Robbins, K. M. Dalton, R. J. Davidson, A. L. Alexander and A. C. Evans, “Cortical thickness analysis in autism with heat kernel smoothing,” Neurology, vol. 25, no. 4, pp.1256-1265, May 2005.
[5]核磁共振攝影, https://zh.wikipedia.org/wiki/核磁共振成像
[6]核磁共振原理, http://web.it.nctu.edu.tw/~hcsci/hospital/ins/mri.htm
[7]台北市立聯合醫院, http://www.taipei.gov.tw/ct.asp?xItem=161884&ctNode=14946&mp=109141
[8]M. K. Chung, S. Robbins and A. C. Evans, “Unified statistical approach to cortical thickness analysis,” Information Processing in Medical Imaging, Springer, vol. 19, pp.627-638, Jul. 2005.
[9]M. K. Chung, “Heat kernel smoothing and its application to cortical manifolds,” University of Wisconsin-Madison, Department of Statistics, Technical Report 1090, Jul. 2004.
[10]M. K. Chung, K. M. Dalton and R. J. Davidson, “Tensor-based cortical surface morphometry via weighted spherical harmonic representation,” IEEE Trans. on Medical Imaging, vol. 27, no. 8, pp.1143-1151, Aug. 2008.
[11]M. K. Chung, K. M. Dalton, Li Shen, A. C. Evans and R. J. Davidson, “Weighted fourier series representation and its application to quantifying the amount of gray matter,” IEEE Trans. on Medical Imaging, vol. 26, no. 4, pp.556-581, Apr. 2007.
[12]H. Edelsbrunner and J. Harer, “Persistent homology - a survey,” American Mathematical Society, Snowbird, Utah, pp.257-282, Jun. 2008.
[13]L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp.338-353, Jun. 1965.
[14]王進德、蕭大全,類神經網路與模糊控制入門,全華科技圖書股份有限公司, 初版, 1994.
[16]Athinoula A. Martinos Center for Biomedical Imaging, http://www.nmr.mgh.harvard.edu/martinos/aboutUs/index.php
[17]A. M. Dale, B. Fischl and M. I. Sereno, “Cortical surface-based analysis,” Neuroimage, vol. 9, pp.179-194, Feb. 1999.
[18]Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B, “A hybrid approach to the skull stripping problem in MRI,” Neuroimage, vol. 22, no. 3, pp.1060-1075, Jul. 2004.
[19]B. Fischl and A. M. Dale, “Measuring the thickness of the human cerebral cortex from magnetic resonance images,” Proceedings of the National Academy of Sciences, vol. 97, no. 20, Sep. 2000.
[20]A. Cachia, J.F. Mangin, D. Riviere, F. Kherif, N. Boddaert, A. Andrade, D. Papadopoulos-Orfanos, J.B. Poline, I. Bloch, M. Zilbovicius, P. Sonigo, F. Brunelle and J. Regis, “A Primal Sketch of the Cortex Mean Curvature: A morphogenesis based approach to study the variability of the folding patterns,” IEEE Trans. on Medical Imaging, vol. 22, pp.754-765, Jun. 2003.
[21]M. K. Chung, P. Bubenik and P. T. Kim, “Persistence diagrams of cortical surface data,” Information Processing in Medical Imaging, LNCS 5636, pp.386-397, Jul. 2009.
[22]D. MacDonald, N. Kabani, D. Avis and A. Evans, “Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI,” Neuroimage, vol. 12, no. 13, pp.340-356, Sep. 2000.
[23]Y. He, Z. Chen and A. Evans, “Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease,” J. Neurosci., vol. 28, no. 18, p. 4756, 2008.
[24]M. D. Berg, O. Cheong, M.V. Kreveld and M. Overmars, Computational geometry: algorithms and applications, New York, Springer Verlag, 2008.
[25]Y. He, Z. J. Chen and A. C. Evans, “Small-world anatomical networks in the human brain revealed by cortical thickness from MRI,” Cerebral Cortex, vol. 17, no. 10, p. 2407, Jan. 2007.
[26]R. S. Desikan, H. J. Cabral, C. P. Hess, W. P. Dillon, C. M. Glastonbury, M. W. Weiner, N. J. Schmansky, D. N. Greve, D. H. Salat, R. L. Buckner and B. Fischl, “Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease,” Brain, vol. 132, no. 8, p. 2048, May 2009.
[27]Y. Fan, N. Batmanghelich, C. M. Clark and C. Davatzikos, “Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline,” Neuroimage, vol. 39, no. 4, pp.1731-1743, Feb. 2008.
[28]O. Querbes, F. Aubry, J. Pariente, J. A. Lotterie, J. F. Demonet, V. Duret, M. Puel, I. Berry, J. C. Fort and P. Celsis, “Early diagnosis of Alzheimer’s disease using cortical thickness: Impact of cognitive reserve,” Brain, vol. 132, no. 8, pp. 2036-2047, Aug. 2009.
[30]認識阿茲罕默症, http://www.ohayoo.com.tw/認識阿茲罕默症~談家庭醫師的角色.htm
[31]小小神經科學-阿茲罕默症, http://www.dls.ym.edu.tw/neuroscience/alz_c.html
[32]台灣失智症協會, http://www.tada2002.org.tw/tada_know_02.html

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔