(3.238.174.50) 您好!臺灣時間:2021/04/11 12:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠政
研究生(外文):Kuan-Cheng Chen
論文名稱:具高效率及低電流諧波之高速永磁同步馬達六步波電壓轉矩控制
論文名稱(外文):A High Efficiency and Low Current Harmonics Torque Control for High Speed PMSM using Six-Step Voltage
指導教授:黃明熙
口試委員:林法正賴炎生
口試日期:2013-07-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:電流諧波六步波電壓驅動永磁同步馬達電動載具MTPA
外文關鍵詞:current harmonicsSix-step voltage controlPermanent Magnet Synchronous MotorElectric vehicleMaximal Torque per Ampere
相關次數:
  • 被引用被引用:3
  • 點閱點閱:371
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
用於電動載具之永磁同步馬達驅動器,多希望系統有高效率、高功率密度且馬達有廣泛之定功率輸出範圍。其中,永磁同步馬達之定功率區或高速運作與其變頻器之直流鏈電壓及輸出電壓有效利用率有關,一般六步波切換有最大之電壓有效利用率,但此法會提高定子電流諧波而造成馬達轉矩漣波過大而衍生效率不佳、振動及噪音等問題;本文提出一具六步波電壓驅動及其振幅可調控之低電流諧波控制策略,可用於永磁同步馬達高速或定功率區之轉矩控制,除大幅降低馬達振動及噪音外亦可有效提升變頻器效率及延伸馬達定功率或高速之操作區域。首先,針對六步波電壓驅動所產生之電流諧波成分進行傅立葉分析,透過改變變頻器之直流鏈電壓與相電壓角度之雙自由度控制來達到抑制定子電流諧波及提高電壓有效利用率之目的;隨後依據馬達特性來微調相電壓角度以提高系統效能。
所提方法於MATLAB建構模擬環作為分析與設計之參考,並以TI之數位訊號處理器TMS320F28035作為控制核心,分別於3kW/9.55Nm/3000rpm表面貼磁及6kW/47.7Nm/1200rpm內置磁石之永磁同步馬達,驗證所提之驅動方法。


High efficiency, power density and wide constant power region are all the required conditions of permanent magnet synchronous motor (PMSM) in electric vehicles. The DC-link voltage of inverter is dependent on the output voltage utilization of the PMSM. The conventional six-step voltage control method provides maximum voltage utilization, but this control method increases current harmonics, torque ripple, vibration and noise. This proposed method is a torque control combining six-step voltage control and variation voltage to reduce current harmonics in high speed region and constant power region. Beside reduce vibration and noise, but also increase efficiency of inverter and extend constant power region. First, using Fourier method to analysis current harmonics. Through two-degree-of-freedom control (regulated DC-link voltage and phase angle) to reduce current harmonics and increase voltage utilization. Second, increase system efficiency by adjust phase angle according to motor characteristic.
Finally, a simulation based on MATLAB and Mathematica to analysis and design proposed method. The experimental results test based on MCU TMS320F28035 with 3kW/9.55Nm/3000rpm SMPM and 6kW/47.7Nm/1200rpm IPMSM to verify the effectiveness of the proposed system.


摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1研究背景及目的 1
1.2研究近況與文獻回顧 2
1.2.1電動車用馬達 2
1.2.2電動車用驅動器之發展近況 3
1.3研究方法 11
1.4論文大綱 12
第二章 永磁同步馬達驅動器之原理及分析 14
2.1 前言 14
2.2 PMSM主導方程式 14
2.2.1 線性理想模型 14
2.2.2 電壓及電流邊界限制 16
2.3 馬達驅動調變方式 18
2.3.1正弦波寬調變 19
2.3.2空間向量波寬調變 22
2.3.3 六步波控制 24
2.4六步波雙自由度控制方式 25
2.4.1六步波電壓驅動 25
2.4.2 相電壓超前角度、直流鏈電壓與定子電流諧波關係 30
2.4.3 相電壓超前角度、直流鏈電壓與轉矩關係 32
2.5 六步波電壓控制策略 36
第三章 具有動態昇壓之直流-直流轉換器 38
3.1 前言 38
3.2直流-直流轉換器原理分析 38
3.3直流-直流轉換器硬體設計 41
3.4直流-直流轉換器軟體設計 44
3.4.1 軟體架構 44
3.4.2 軟體流程之規劃 45
3.5直流-直流轉換器頻寬響應分析及控制器設計 47
3.5.1直流-直流轉換器頻寬分析及轉移函數推導 47
3.5.2 控制器設計 49
3.6直流-直流轉換器實驗結果 53
第四章 控制策略平台建構及實現 56
4.1 前言 56
4.2 系統規格 56
4.3 微處理器硬體規劃與設計 57
4.4 系統軟體規劃 59
4.4.1 軟體架構 59
4.4.2 軟體流程圖 60
4.5 馬達驅動器 63
4.5.1 轉子位置回授及速度估測運作 63
4.5.2 向量控制電流迴路控制器設計 64
第五章 實驗結果及討論 68
5.1 前言 68
5.2 實驗系統設置 68
5.3 實驗結果及數據分析 70
第六章 結論與未來展望 90
6.1結論 90
6.2未來研究方向 90
參考文獻 92
符號彙編 96


[1]Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2010 (EPA 2012). [Online] http://www.c2es.org/facts-figures/us-emissions/sector
[2]Z. Q. Zhu and D. Howe, “Electrical Machines and Drives for Electric, Hybrid, and Fuel Cell Vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 746-765,Apr. 2007.
[3]張智凱,「具低解析度轉子磁場位置回授之永磁同步馬達驅動器研製」,國立臺北科技大學電機工程系碩士學位論文,民國九十九年。
[4]H. Nakai, H. Ohtani, E. Satoh, and Y. Inaguma, "Development and Testing of The Torque Control for the Permanent-Magnet Synchronous Motor," IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 800-806, Jun. 2005.
[5]H. Nakai, H. Ohtani, E. Satoh, and Y. Inaguma,”Novel Torque Control Technique for High Effciecy/High Power Interior Permanent Magnet Synchronous Motors” Review of Toyota CDRL Vol. 40 No. 2, 2005.
[6]辜重興「具有弱磁控制之電動載具用永磁同步馬達驅動器研製」,國立臺北科技大學電機工程系碩士學位論文,民國九十九年。
[7]T. M. Jahns, “Flux-Weakening Regime Operation of an Interior Permanent-Magnet Synchronous Motor Drive,” IEEE Trans. Ind. Appl., vol. IA-23, no. 4, pp. 681-689, Jul. 1987.
[8]S. M. Sue and C. T. Pan, “Voltage-Constraint-Tracking-Based Field-Weakening Control of IPM Synchronous Motor Drives,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 340-347, Jan. 2008.
[9]J. H. Liaw, Y. H. Liao, C.W. Tung, S.M. Sue, and Y. S. Huang, “A Robust Field-Weakening Control Strategy for IPMSM Drives,” in Proc. IPEC, pp. 605-611, 2010.
[10]B. H. Bae, N. Patel, S. Schulz, and S. K. Sul, “New Field Weakening Technique for High Saliency Interior Permanent Magnet Motor,” in Proc. IAS. 38th, vol.2, pp. 898-905, 2003.
[11]J. S. Park, S. M. Jung, H. W. Kim, and M. J. Youn, “Current Control of PMSM in Over Modulation Region,” in Proc. ICPE. 7th, pp. 1062-1065, Oct. 2007
[12]K. Sun, Q. Wei, L. Huang, and K. Matsuse, “An Over Modulation Method for PWM-Inverter-Fed IPMSM Drive With Single Current Sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3395-3404,Oct. 2010.
[13]S. Lerdudomsak, S. Doki, and S. Okuma, “Analysis for Unstable Problem of PMSM Current Control System in Over Modulation Range,” in Proc. IEEE. IAS, pp. 1-8, 2008.
[14]T. S. Kwon, G. Y. Choi, M. S. Kwak, and S. K. Sul, “Novel Flux-Weakening Control of an IPMSM For Quasi-Six-Step Operation,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1722-1731, Nov/Dec. 2008.
[15]H. S. Liu, Z. Q. Zhu, E. Mohamed , Y. L. Fu, X. Y. Qi, “Flux-Weakening Control of Nonsalient Pole PMSM Having Large Winding Inductance Accounting for Resistive Voltage Drop and Inverter Nonlinearities,” IEEE Tran. on Power Electronics, vol. 27, no. 2, pp.942-952, 2013.
[16]H. Nakai, H. Ohtani, E. Satoh, and Y. Inaguma, "Development and Testing of The Torque Control for The Permanent-Magnet Synchronous Motor," IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 800-806, Jun. 2005.
[17]H. Nakai, H. Ohtani, E. Satoh, and Y. Inaguma,”Novel Torque Control Technique for High Effciecy/High Power Interior Permanent Magnet Synchronous Motors,” Review of Toyota CDRL Vol. 40 No. 2, 2005.
[18]F. D. Kieferndorf, M. Forster, and T. A. Lipo, "Reduction of DC-Bus Capacitor Ripple Current with PAM/PWM Converter," IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 607-614, Mar/Apr. 2003.
[19]T. Senjyu, Y. Noguchi, N. Urasaki, A. Yona, H. Sekine, and T. Funabashi, "Wide-Speed-Range Optimal PAM Control for Permanent Magnet Synchronous Motors," in Proc. ICPE. 7th , pp. 916-921, 2007.
[20]K. Asano, Y. Inaguma, H. Ohtani, E. Sato, M. Okamura, and S. Sasaki, "High Performance Motor Drive Technologies for Hybrid Vehicles," in Proc. PCC, pp. 1584-1589, Oct. 2007.
[21]A. M. Hava, R. J. Kerkman, T. A. Lipo, "Simple Analytical and Graphical Methods for Carrier-Based PWM-VSI Drives," IEEE Tran. on Power Electronics., vol. 14, no. 1, pp. 49-61, JAN 1999.
[22]L. Qin, F. Z. Peng, "PWAM Boost-Converter-Inverter System for EV Engine Starter/Alternator," in Proc. ECCE, pp.2696-2976, 2012.
[23]J. H. Jang, S. K. Sul, J. I. Ha, K. Ide, M. Sawamura, "Sensorless Drive of SMPM Motor by High Frequency Signal Injection," in Proc. APECE, pp.279-285, vol. 1, 2002.
[24]S. Morimoto, M. Sanada, Y. Takeda, "Effects and Compensation of Magnetic Saturation in Flux-Weakening Controlled Permanent Magnet Synchronous Motor Drives, " IEEE Tran. On Industry Applications , vol. 30, no. 6, pp.1632-1637, 1994.
[25]劉昌煥著,「交流電機控制」,台北市: 全華,民國91年,第103~130頁。
[26]楊勝明,「永磁同步馬達課程講義」,民國一百零一年,Lecture 3 Modeling and Control of Permanent Magnet Synchronous Motor。
[27]孫清華譯,「最新直流無刷馬達」,台北市: 全華,民國91年,第2-24~2-25頁。
[28]陳錦豪,「用於永磁同步馬達之具類弦波定子電流的六步波電壓驅動技術」,國立臺北科技大學電機工程系碩士學位論文,民國101年。
[29]European Power Supply Manufacturers Association, EPSMA, “Guidelines to The Standard EN 61000-3-2,” 2010.
[Online] http://www.epsma.org/pdf/PFC%20Guide_November%202010.pdf
[30]賴炎生,電機月刊第十四卷第一期,「向量控制的座標轉換基本原理」,第216~222頁
[31]梁適安,交換式電源供給器之理論與實務設計(修訂版),台北:全華科技圖書股份有限公司,2008,第12-68頁。
[32]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, 2001.
[33]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, New York: John Wiley & Sons, 2003, pp. 173.
[34]P. C. Todd, UC3854 Controlled Power Factor Correction Circuit Design Application Note, USA: Texas Instruments Incorporated, 1999.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔