跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李維庭
研究生(外文):Wei-Ting Lee
論文名稱:應用於電動車及混合電動車之雙模式整合電路與控制技術的研製
論文名稱(外文):Design and Implementation of Integrated Circuit and Control Technique of Motor Drives with Dual Mode Control for EV/HEV Applications
指導教授:賴炎生
口試委員:林詠凱黃明熙黃仲欽
口試日期:2013-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:54
中文關鍵詞:升壓轉換器變頻器馬達驅動器
外文關鍵詞:Boost converterinvertermotor drives
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本文提出一應用於電動車及混合電動車之具有雙模式控制的新型電機驅動整合電路。提出之整合電路可以使永磁同步電動機動作於馬達模式或是當作升壓電路之升壓電感,進而提升輸出轉矩且耦合於相同的傳輸系統或是提升連接於整合電路之變頻器的直流鏈電壓。在馬達模式下,提出之整合電路動作於變頻器;而整合電路動作於升壓型轉換器時,將利用馬達繞組當作升壓電感,進而提升轉換器的輸出電壓。
此外,於升壓模式下,提出一可提升效率之應用於整合電路的新型控制技術。提出之控制技術係在重載時,利用交錯式控制可以顯著的減少電流漣波,進而降低損失以及熱應力;相比之下,於輕載時,使用單相控制可以避免增加額外的切換損失以及導通損失。
實驗結果由數位訊號處理器控制一3 kW變頻器/轉換器來驗證其升壓比可以從1.25至3。於滿載情況下,效率可以達到93.83 %,且馬達溫度均能夠維持於室溫;這些結果充分的驗證了本文所提出之整合電路的優點。


A new integrated circuit for motor drives with dual mode control for EV/HEV applications is proposed. The proposed integrated circuit allows the permanent magnet synchronous motor to operate in motor mode or acts as boost inductors of the boost converter, and thereby boosting the output torque coupled to the same transmission system or dc-link voltage of the inverter connected to the output of the integrated circuit. In motor mode, the proposed integrated circuit acts as an inverter and it becomes a boost-type boost converter, while using the motor windings as the boost inductors to boost the converter output voltage.
Moreover, a new control technique for the proposed integrated circuit under boost converter mode is proposed to increase the efficiency. The proposed control technique is to use interleaved control to significantly reduce the current ripple and thereby reducing the losses and thermal stress under heavy-load condition. In contrast, single phase control is used for not invoking additional switching and conduction losses under light-load condition.
Experimental results derived from a digital-controlled 3-kW inverter/converter using digital signal processing show the voltage boost ratio can go up to 1.25 to 3. And the efficiency is 93.83% under full-load condition while keeping the motor temperature at the atmosphere level. These results fully confirm the claimed merits for the proposed integrated circuit.


中文摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究動機與背景 1
1.2 論文貢獻 4
1.3 論文綱要 6
第二章 雙模式整合電路設計 7
2.1 雙模式整合電路基本架構 7
2.2 雙模式整合電路小訊號等效模型 10
2.3 雙模式整合電路控制技術 16
第三章 系統設計 20
3.1 數位控制器設計 21
3.2 硬體電路設計 25
3.2.1 輸出電壓回授電路 25
3.2.2 功率開關驅動電路 26
3.2.3 相電流回授電路 27
3.3 軟體設計 28
3.3.1 數位訊號處理器特性簡介 28
3.3.2 程式流程規劃 32
第四章 實驗結果 34
4.1 系統規格 34
4.2 實驗波形 36
4.2.1 模式切換之暫態響應 36
4.2.2 電流漣波分析與比較 39
4.2.3 功率開關溫度分析與比較 40
4.2.4 滿載波形及效率曲線分析 42
第五章 結論與未來展望 49
5.1 結論 49
5.2 未來展望 50
參考文獻 51
附錄 53
A. 永磁同步電動機 53
B. 整合電路實體圖 53
C. 電路實驗系統圖 54


[1]M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2151–2169, May 2013.
[2]G. Maggetto and J. Van Mierlo, “Electric and electric hybrid vehicle technology: A survey,” in Proc. IEE Semin. Electric, Hybrid Fuel Cell Vehicles, pp. 1–1-111, Apr. 2000.
[3]M. Habib Ullah, T. S. Gunawan, M. R. Sharif, and R. Muhida, “Design of environmental friendly hybrid electric vehicle,” in Proc. IEEE Conf. Comput. Commun. Eng., pp. 544–548, July 2012.
[4]O. Hegazy, J. Van Mierlo, and P. Lataire, “Analysis, modeling, and implementation of a multidevice interleaved DC/DC converter for fuel cell hybrid electric vehicles,” IEEE Trans. Power Electron., Vol. 27, No. 11, pp. 4445–4458, Nov. 2012.
[5]W. Qian, H. Cha, F. Z. Peng, and L. M. Tolbert, “55-kW variable 3X DC-DC converter for plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 1668–1678, Apr. 2012.
[6]K. I. Laskaris and A. G. Kladas, “Optimal power utilization by adjusting torque boost and field weakening operation in permanent magnet traction motors,” IEEE Trans. on Energy Conversion, Vol. 27, No. 3, Sep. 2012.
[7]S. Sadeghi, L. Guo, H. A. Toliyat, and L. Parsa, “Wide operational speed range of five-phase permanent magnet machines by using different stator winding configurations,” IEEE Trans. on Industrial Electronics, Vol. 59, No. 6, June 2012.
[8]D. Dujic, M. Jones, and E. Levi, “Analysis of output current-ripple RMS in multiphase drives using polygon approach,” IEEE Trans. on Power Electron., Vol. 25, No. 7, July 2010.
[9]L. Parsa and H. A. Toliyat, “Five-phase permanent-magnet motor drives,” IEEE Trans. on Industry Application, Vol. 41, No. 1, pp. 30–37, Jan.-Feb. 2010.
[10]Z. Jian, W. Xuhui, and Z. Lili, “Optimal system efficiency operation of dual PMSM motor drive for fuel cell vehicles propulsion,” in Proc. IEEE Conf. on Power Electronics and Motion Control, pp. 1889–1892, May 2009.
[11]Y. S. Lai, C. A. Yeh, and K. M. Ho, “A family of predictive digital-controlled PFC under boundary current mode control,” IEEE Trans. Ind. Informatics, Vol. 8, No. 3, pp. 448–458, Aug. 2012.
[12]Y. Jang, G. Feng, and M. M. Jovanovic, “Interleaved boost bonverter with Intrinsic voltage-doubler characteristic for universal-line PFC front end,” IEEE Trans. Power Electron., Vol. 22, No. 4, pp. 1394–1401, July 2007.
[13]M. A. P. Andrade, L. Schuch, and J. R. Pinheiro, “Generalized switching logic scheme for CCM-PFC interleaved boost converters,” in Proc. IEEE Power Electron. Spec. Conf., Vol. 3, pp. 2353–2359, June 2004.
[14]Y. Gu and D. Zhang, “Interleaved boost converter with ripple cancellation network,” IEEE Trans. Power Electron., Vol. 28, No. 8, pp. 3860–3869, Aug. 2013.
[15]Y. T. Chen, S. Shiu, and R. Liang, “Analysis and design of a zero-voltage-switching and zero-current-switching interleaved boost converter,” IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 161–173, Jan. 2012.
[16]T. Grote, H. Figge, N. Frohleke, W. Beulen, F. Schafmeister, P. Ide, and J. Bocker, “Semi-digital interleaved PFC control with optimized light load efficiency,” in Proc. IEEE Appl. Power Electron. Conf., pp. 1722–1727, Feb. 2009.
[17]R. W. Erickson and D. Maksimovi′c, Fundamental of power electronics, 2nd ed. Norwell, MA, USA: Kluwer, 2001.
[18]Texas Instruments, Dallas, TX, USA, Datasheet TMS320 F2808, 2012.
[19]Panasonic, Kadoma, Japan, Motor Specifications MHMA302P1G, 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top