(34.204.186.91) 您好!臺灣時間:2021/04/19 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐嘉駿
研究生(外文):Jia-Jiun Hsu
論文名稱:線性時變時滯系統穩定性與穩定化條件的新分析結果
論文名稱(外文):New Stability and Stabilization Criteria for Linear Systems with Retarded Time-Varying Delay
指導教授:練光祐
指導教授(外文):Kuang-Yow Lian
口試委員:黃有評曾傳蘆黃正民蘇景暉
口試委員(外文):Yo-Ping HuangChwan-Lu TsengCheng-Ming HuangJuing-Huei Su
口試日期:2013-07-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:71
中文關鍵詞:時變時滯穩定性線性矩陣不等式多面體型不確定性
外文關鍵詞:Time-varying DelayStabilityLinear Matrix Inequality (LMI)Polytopic Uncertainty
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在說明滯後型時變時滯線性系統的穩定性分析,主要基於Lyapunov定理與線性矩陣不等式的數學方法來探討穩定性與穩定化的條件。藉由建立一個新穎的增廣型Lyapunov泛函,其中包含了雙重積分項、三重積分項和一個帶有高次方純量的二次式。在推導過程中,我們使用了自由權重矩陣、詹森不等式和其延伸的引理等有效技巧來盡量減少穩定條件的保守度,時滯相關的穩定性條件最終皆以表示成線性矩陣不等式的形式。此外,我們利用這個穩定條件延伸至多面體不確定性系統進而推導出一個強健穩定性條件。最後,從條件中也可以設計出可以使系統穩定的狀態回授控制器。由數值範例可以來證實本論文所提出的方法確實改善以往文獻中的結果。

This thesis considers the stability of linear systems with retarded time-varying delay. It is mainly based on Lyapunov-Krasovskii theory and linear matrix inequality (LMI) methodology to investigate the stability and stabilization criteria. By constructing a new augmented Lyapunov functional which contains double-integral terms, a triple-integral term and a higher degree scalar quadratic function, a delay-dependent stability criterion is presented in an LMI form. In derivation process, we use some effective techniques like free-weighting matrix approach, Jensen inequality and its extended lemma to reduce the conservatism of the stability criteria. Moreover, we make this criterion extend to the polytopic uncertainty system and then propose a robust stability criterion. Finally, the stability criterion is also used to design a stabilizing state-feedback controller. Numerical examples are given to show that our results achieve by far the best result in the literatures.

Contents

摘 要 i
ABSTRACT ii
誌 謝 iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 5
1.3 Review of Some Methods for Deriving Stability Conditions 7
1.3.1 Fixed Model Transformation 8
1.3.2 Free-Weighting Matrix Approach 10
1.3.3 Jensen Integral Inequality Approach 11
1.4 Purpose and Contribution 13
1.5 Organization of the Thesis 14
Chapter 2 Preliminary 16
2.1 Stability of Time-delay Systems 16
2.1.1 Time-delayed Mathematical Models 16
2.1.2 Concept of Stability 17
2.1.3 Lyapunov-Krasovskii Stability Theorem 19
2.2 LMI Method 20
2.2.1 Common Specifications of LMIs 21
2.2.2 Standard LMI Problems 22
2.3 Facts and Lemmas 23
Chapter 3 New Stability Criteria of Retarded Time-Varying Delay Systems 25
3.1 Problem Formulation 25
3.2 Construction of Lyapunov Functional 26
3.3 Main Results for Stability Criterion 28
3.4 Verification of Delay Decomposition approach 37
3.5 An Illustrative Example 40
Chapter 4 Robust Stability Criteria for Linear Time-Delay Systems with Polytopic Uncertainties 42
4.1 Problem Formulation 43
4.2 Main Results for Robust Stability Criterion 44
4.3 An Illustrative Example 47
Chapter 5 Stabilizing Controller Design for Retarded Time-Varying Delay Systems 49
5.1 Two Methods of Controller Design 49
5.2 Problem Formulation 50
5.3 Main Results for Stabilization Criterion 51
5.4 Another Parameter-Tuning Method 56
5.5 An Illustrative Example 60
Chapter 6 Conclusions and Future Work 63
References 65
Notations 70


References

[1] J. M. Smith, “A controller to overcome dead-time,” ISA Transactions, vol. 6 no. 2, 1959, pp. 28-33.
[2] T. Mori, “Criteria for asymptotic stability of linear time-delay systems,” IEEE Transactions on Automatic Control, vol. AC-30, no. 2, 1985, pp. 158-161.
[3] M. Wu, Y. He, J. H. She, and G. P. Liu. “Delay-dependent criteria for robust stability of time-varying delay systems,” Automatica, vol. 40, no. 8, 2004, pp. 1435-1439.
[4] S. Xu and J. Lam, “A survey of linear matrix inequality techniques in stability analysis of delay systems,” International Journal of Systems Science, vol. 39, no. 12, 2008, pp. 1095-1113.
[5] E. Fridman and U. Shaked, “Delay-dependent stability and H control: constant and time-varying delays,” International Journal of Control, vol. 76, no. 1, 2003, pp.48-60.
[6] V. Kharitonov and D. Melchor-Aguilar, “On delay-dependent stability conditions,” System and Control Letters, vol. 40, no. 1, 2004, pp. 70-76.
[7] K. Gu and S.I. Niculescu, “Additional dynamics in transferred time-delay systems,” IEEE Transactions on Automatic Control, vol. 45, no. 3, 2000, pp. 572-575.
[8] P. Park, “A delay-dependent stability criterion for systems with uncertain time-invariant delays,” IEEE Transactions on Automatic Control, vol. 44, no. 4, 1999, pp. 876-877.
[9] Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, “Delay-dependent robust stabilization of uncertain state-delayed systems,” International Journal of control, vol, 74, no. 14, 2001, pp. 1447-1455.
[10] J. H. Park, “A new delay-dependent criterion for neutral systems with multiple delay,” Journal of Computational and Applied Mathematics, vol.136, no. 1, 2001, pp. 177-184.
[11] E. Fridman, “New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type system,” Systems and Control Letters, vol. 43, no. 2, 2001, pp. 309-319.
[12] Y. He, M. Wu, J. H. She and G.P. Liu, “Parameter dependent Lyapunov function for stability of time-delay systems with polytopic-type uncertainties”, IEEE Transactions on Automatic control, vol. 49, no. 5, 2004, pp. 828-832.
[13] E. Fridman and U. Shaked, “An improved stabilization method for linear time-delay systems,” IEEE Transactions on Automatic Control, vol. 47, no. 11, 2002, pp. 1931-1937.
[14] H. Gao and C. Wang, Comments and further results on “A descriptor system approach to H control of linear time- delay systems,” IEEE Transactions on Automatic Control, vol. 48, no. 3, 2003, pp. 520-525.
[15] Y. S. Lee, Y. S. Moon, W. H. Kwon and P. G. Park, “Delay-dependent robust H control for uncertain systems with a state-delay,” Automatica, vol. 40, no. 1, 2004, pp. 65-72.
[16] K. Gu, “An integral inequality in the stability problem of time-delay systems,” Proceedings of the 39th IEEE conference on decision and control, Sydney, Australia, 2000, pp. 2805-2810.
[17] Q. L. Han, “Absolute stability of time-delay systems with sector-bounded nonlinearity,” Automatica, vol. 41, no. 12, 2005, pp. 2171-2176.
[18] H. Y. Shao, “Improved delay-dependent stability criteria for systems with a delay varying in a range,” Automatica, vol. 44, no. 12, 2008, pp. 3215-3218.
[19] C. Peng and Y. C. Tian, “Improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay,” IET Control Theory Appl., vol. 2, no. 9, 2008, pp. 752-761.
[20] H. Y. Shao, “New delay-dependent stability criteria for systems with interval delay,” Automatica, vol. 45, no. 3, 2009, pp. 744-749.
[21] A. Papachristodoulou, M. Peet and S. Lall, “Constructing Lyapunov-Krasovskii functionals for linear time-delay systems,” American Control Conference, Portland, USA, 2005, pp. 2845-2850.
[22] K. Gu, V. L. Kharitonov and J. Chen, Stability of time-delay Systems, Boston: Birkhauser, 2003.
[23] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming, Philadelphia: SIAM, 1994.
[24] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.
[25] E. Fridman and U. Shaked, “A descriptor system approach to control of linear time-delay systems,” IEEE Transactions on Automatic Control, vol. 47, no. 2, 2002, pp. 253-270.
[26] L. Dugard and E. I. Verriest, Stability and control of time-delay systems, London: Spring-Verlag, 1997.
[27] P. Park and J. W. Ko, “Stability and robust stability for systems with a time varying delay,” Automatica, vol. 43, no. 10, 2007, pp. 1855-1858.
[28] Y. He, Q. G. Wang, L. Xie and C. Lin, “Further improvement of free weighting matrices for systems with time-varying delay,” IEEE Transactions on Automatic Control, vol. 52, no.2, 2007, pp. 293-299.
[29] Q. L. Han, “A delay decomposition approach to stability and H∞ control of linear time-delay systems — part I: stability,” 7th World Congress on Intelligent Control and Automation, Chongqing, China, 2008, pp. 289-294.
[30] Y. He, Q. G. Wang, C. Lin and M. Wu, “Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems,” Int. J. Robust Nonlinear Control, vol. 15, no. 18, 2005, pp. 923-933.
[31] J. Sun, G. P. Liu and J. Chen, “Delay-dependent stability and stabilization of neutral time-delay systems,” Int. J. Robust Nonlinear Control, vol. 19, no. 12, 2009, pp. 1364-1375.
[32] J. Sun, G. P. Liu, J. Chen and D. Rees, “Improved stability criteria for linear systems with time-varying delay,” IET Control Theory Appl., vol. 4, no. 4, 2010, pp. 683-689.
[33] J. Sun, G. P. Liu, J. Chen and D. Rees, “Improved delay-range dependent stability criteria for linear systems with time-varying delays,” Automatica, vol. 46, no. 2, 2010, pp.466-470.
[34] J. Sun, G. P. Liu, J. Chen and D. Rees, “Improved stability criteria for neural networks with time-varying delay,” Physics Letters A, vol. 373, no. 3, 2009, pp. 342-348.
[35] J. H. Kim, “Note on stability of linear systems with time-varying delay,” Automatica, vol. 47, no. 9, 2011, pp. 2118-2121.
[36] B. Yang and W. Zhao, “Augmented Lyapunov functional approach for linear systems with time-varying delay,” 2012 International Conference on System Science and Engineering, Dalian, China, 2012, pp. 158-162.
[37] H. J. Gao, P. Shi, and J. L. Wang, “Parameter-dependent robust stability of uncertain time-delay systems,” J. Computational and Applied Math., vol. 206, no. 1, 2007, pp. 366-373.
[38] L. Lee and J. S. Chen, “Delay-dependent robust stability and stabilization for polytopic systems with time-varying delay,” Proceedings of the 30th Chinese Control Conference, Yantai, China, 2011, pp. 1263-1268.
[39] L. Orihuela, P. Millan, C. Vivas and F. R. Rubio, “Delay-dependent robust stability analysis for systems with interval delays,” 2010 American Control Conference, Baltimore, MD, USA, 2010, pp. 4993-4998.
[40] L. E. Ghaoui, F. Oustry and M. AitRami, “A cone complementarity linearization algorithm for satic output-feedback and related problems,” IEEE Transactions on Automatic Control, vol. 42, no. 8, 1997, pp. 1171-1176.
[41] X. M. Song, S. S. Zhou and W. X. Zheng, “Delay-dependent stabilization for continuous-time piecewise time-delay systems,” Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006, pp. 578-581.
[42] M. Wu, Y. He and J. H. She, “New delay-dependent stability criteria and stabilizing method for neutral systems,” IEEE Transactions on Automatic Control, vol. 49, no. 12, 2004, pp. 2266-2271.
[43] M. N. Alpaslan Parlakci, “Improved robust stability criteria and design of robust stabilizing controller for uncertain linear time-delay systems,” Int. J. Robust Nonlinear Control, vol. 16, no. 13, 2006, pp. 599-636.
[44] 林詠盛,區間時變時滯線性系統穩定條件的新分析結果,碩士論文,國立臺北科技大學電機工程系碩士班,臺北,2012。
[45] 孫健、陳杰、劉國平著,時滯系統穩定性分析與應用,北京,科學出版社,2012,第49-57頁。


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔