(34.239.150.57) 您好!臺灣時間:2021/04/14 22:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅一龍
研究生(外文):Yi-Lung Luo
論文名稱:整合型鋰電池與超級電容器能量管理系統之研製
論文名稱(外文):Design and Implementation of an Integrated Li-ion and Super-capacitor Energy Management System
指導教授:歐勝源
指導教授(外文):Sheng-Yuan Ou
口試委員:王見銘賴炎生
口試委員(外文):Yen-Shin Lai
口試日期:2013-07-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:110
中文關鍵詞:升壓型轉換器脈衝式充電法多段式CC-CC充電法鋰離子電池超級電容器均壓充電
外文關鍵詞:Boost ConverterLi-ion BatterySuper-capacitorPulse Charging MethodMCC Charging MethodBalance Charge
相關次數:
  • 被引用被引用:6
  • 點閱點閱:572
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種利用數位化控制之整合型鋰電池與超級電容器能量管理模組,整合超級電容器充電模組及鋰電池充電模組,並加入鋰電池後端之DC/DC升壓轉換器,且經由微控制器進行能量分配管理,彌補鋰電池操作於較高負載時電池能量急遽變動之缺點,避免電池因能量急遽變動產生較高溫升,進而達成延長鋰電池之使用壽命。
鋰離子電池充電部分是利用LTC公司(Linear Technology)所出產之LTC4052為控制器,其充電法則為多段式定電流充電法(Multi-stage Constant Current, MCC)及脈衝式充電法(Pulse),超級電容器均壓充電控制器則是採用LTC4425。升壓型轉換器使用TI (Texas Instruments)出產之TPS61222為PWM控制器。系統控制以Microchip所出產之微控制器(Microcontroller Unit, MCU) dsPIC33FJ06GS202為整體系統之控制核心。利用微控制器偵測鋰電池與超級電容器之電流及電壓,並使用程式實現所提電能管理控制策略,使系統能夠依據負載功率變動狀態進行超級電容器與鋰電池之能量分配。
本論文所使用的鋰離子電池之優點為較無記憶效應、體積小、容量大以及充
電電壓較高等。超級電容器具有高功率密度、壽命長、優異的充放電速度以及操作溫度範圍較寬等優點。本論文所選用的鋰離子電池規格為3.7 V/350 mA,額定功率容量為1.295 Wh;超級電容器規格為2.5 V/3.3 F。本文以鋰電池與超級電容器充放電模組進行實驗,當瞬時負載變動較大時,將超級電容器接載,藉以輔助鋰電池在重載時之能量輸出。此外,本論文中所採用的控制IC具有均壓充電功能,在充電後可達成串接超級電容器間之電壓平衡。
鋰電池與超級電容器充放電電路之設計規格如下;輸入直流電壓為5.5 V,最大輸入電流為1 A,定電流輸出模式下之最大負載電流為270 mA,而中載為170 mA,且DC/DC升壓型轉換器之輸出電壓為5 V。實驗結果驗證本論文所提之各項功能與控制策略之正確性及可行性。


This thesis presents an integrated energy management system for Li-ion battery and super-capacitor. The proposed system integrates a super-capacitor charging module and a Li-ion battery charging module, and adds a DC/DC boost converter as the post-regulator for Li-ion battery. The energy distribution via the micro-controller management to make up Li-ion battery for higher load status to extend the Li-ion battery life. The proposed energy management system associated with the control strategy can distribute the output energy required for load situation, especially the abruptly varied load.
The controller for Li-ion battery is LTC4052 manufactured by Linear Technology (LTC), wherein the familiar multi-stage constant current charging (MCC) method and pulse charging method both are used. The controller for super-capacitors to achieve voltage balance charging is LTC4425. The PWM controller TPS61222 by Texas Instruments (TI) is used for the boost converter. The micro-controller dsPIC33FJ06GS202 by Microchip is utilized as the control core of entire system. The used micro-controller detects current through and voltages across the Li-ion battery and super-capacitors, and performs the implemented control program to achieve the proposed control strategy for energy management system to distribute the required energy even under the abrupt load variances.
Li-ion battery takes advantages of high energy density, high operation voltage and non-memory effect. The advantages of super-capacitor includes high power density, long life, excellent charge and discharge speed, and a wide range of operating temperature. The specification of the used Li-ion battery is 3.7 V/350 mA, the rated capacity is 1.295 Wh and super-capacitor specifications is 2.5 V/3.3 F. Besides charging and discharging control for both Li-ion battery and super-capacitor, the control strategy proposed in this thesis programs Li-ion battery as the primary source to load, that is, in normal operations, energy is supplied to load by Li-ion battery. Additionally, the control method connects super-capacitor to Li-ion battery with parallel both as the power source for the abrupt load situation if necessary. For charging balance control between the super-capacitors, an existing IC is used to achieve equal voltages across individual super-capacitor.
The design specifications are as follows : the input voltage is 5.5 V, the maximum input current is 1 A, the output constant current is 270 mA, and the output voltage of DC/DC converter is 5 V. Finally, the experimental results verify correctness and feasibility of the proposed circuit structure and control strategy.


摘 要 i
ABSTRACT iii
致 謝 v
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景與目的 1
1.2 內容內容 2
1.3 內容大綱 2
第二章 電池特性、電池充電與電量估測方式 4
2.1 電池種類與專有名詞定義 4
2.2 鋰電池特性介紹 8
2.2.1 鋰金屬電池 8
2.2.2 鋰離子電池 9
2.3 超級電容器特性介紹 11
2.3.1 超級電容器工作原理 12
2.3.2 超級電容器電量與能量計算 14
2.3.3 超級電容器之應用 14
2.4 二次電池充電方式 15
2.4.1 定電壓充電法 15
2.4.2 定電流充電法 16
2.4.3 定電流-定電壓充電法 17
2.4.4 涓流式充電法 18
2.4.5 脈衝式充電法 18
2.4.6 多段式定電流充電法 19
2.5電池電量估測方法 20
2.5.1 內阻量測法 20
2.5.2 開路電壓法 21
2.5.3 放電測試法 21
2.5.4 有載電壓法 22
2.5.5 安培小時法 22
第三章 整合型充電模組原理介紹 24
3.1 整合型充電模組介紹 24
3.2 控制IC LTC4425之應用 25
3.2.1 線性穩壓模式 26
3.2.2 充電電流模式 27
3.2.3 控制IC LTC4425參數說明 28
3.2.4 均壓充電電路設計 30
3.3 控制IC LTC4052之應用 32
3.3.1 控制IC LTC4052充電狀態 33
3.3.2 控制IC LTC4052參數說明 34
3.3.3 鋰電池涓流充電和故障的電池檢測 34
3.3.4 鋰電池充電電路設計 35
3.4 控制IC TPS61222之應用 36
3.4.1 升壓型轉換器動作原理 37
3.4.1.1連續導通模式 38
3.4.1.2邊界導通模式 41
3.4.1.3不連續導通模式 42
3.4.2 同步整流升壓型轉換器 45
3.4.3 控制IC TPS61222之電感及電容選擇 46
3.4.3.1電感選擇 46
3.4.3.2電容選擇 47
3.4.4 磁滯電流控制 47
第四章 硬體與週邊電路設計 50
4.1 電池管理系統之硬體整合電路設計 50
4.2 功率開關元件選擇 51
4.3 閘極驅動器選用 52
4.4 電池電壓取樣訊號電路 53
4.5 負載電流取樣訊號電路 54
4.6 微控制器電路設計 55
第五章 數位訊號處理器及軟體系統架構 56
5.1 微控制器特性介紹 57
5.2 高速類比數位訊號轉換器 58
5.3 中斷 59
5.4 輸出埠高準位輸出 60
5.5 整合型充電模組管理策略 62
第六章 實驗結果 71
6.1 整合型充電模組規格 71
6.2 實驗平台 72
6.3 實驗結果 73
6.3.1 鋰電池充電模組 73
6.3.2 超級電容器充電模組 78
6.3.3 升壓轉換器IC電路模組 84
6.3.4 變載時鋰電池與超級電容器之狀態 87
6.3.5 整合型能量管理系統之電路效率 94
第七章 結論與未來展望 99
7.1 結論 99
7.2 未來展望 100
參考文獻 101
符號對照表 106
附錄I 電路實體圖 109
附錄II 系統實測圖 110


[1] H. Delavaripour, H. R. Karshenas, A. Bakhshai, and P. Jain “Optimum Battery Size Selection in Standalone Renewable Energy Systems,“ in Proc. of the Telecommunications Energy Conference, 33rd, pp. 1-7, 2011.
[2]D. M. T. J. Williams, A. M. Gole, and R. W. Wachal, “Repurposed Battery for Energy Storage in Applications of Renewable Energy for Grid Applications,” in Proc. of the Electrical and Computer Engineering Canadian Conference on, 24th, pp. 001446,001450, 2011.
[3]H. A. -H. Hussein and I. Batarseh, “A Review of Charging Algorithms for Nickel and Lithium Battery Chargers, ” IEEE Trans. Vehicular Technology, vol.60, no.3, pp.830-838, 2011.
[4]孫清華編譯,最新可充電電池技術大全,全華出版社,台北,2003。
[5]浩崴興業有限公司,電池基本介紹,http://www.doocoo.com.tw/web/.
[6]林振華、林振富編譯,充電式鋰離子電池材料與應用,全華出版社,台北, 2001。
[7]黃可龍、王兆翔、劉素琴編著,鋰離子電池原理與關鍵技術,化學工業出版社,北京,2007。
[8]S. Piller, M. Perrin, and A. Jossen, “Methods for State-of Charge Determination and Their Applications,” J. Power Sources 96, 113-120, 2001.
[9]D. V. Cadar, D. M. Petreus, and C. A. Orian, “A Method of Determining a lithium-ion Battery''s State of Charge,” in Proc. of the Design and Technology of Electronics Packages, 15th, pp. 257-260, 2009.
[10]N. C. Wang and Y. Qin, “Research on State of Charge Estimation of Batteries Used in Electric Vehicle,” in Proc. of the Power and Energy Engineering Conference, pp.1-4, 2011.
[11]K. S. Ng, C. S. Moo, Y. P. Chen, and Y. C. Hsieh, “State-of-Charge Estimation for Lead-Acid Batteries Based on Dynamic Open-Circuit Voltage,” in Proc. of the Power and Energy Conference, 2nd, pp. 972-976, 2008.
[12]Y. Zhang, Z. H. Jiang, and X. W. Yu, “Control Strategies for Battery/Supercapacitor Hybrid Energy Storage Systems,” in Proc. of the Energy 2030 Conference, pp. 1-6, 2008.
[13]M. A. Roscher, J. Assfalg, and O. S. Bohlen, “Detection of Utilizable Capacity Deterioration in Battery Systems,” IEEE Trans. Vehicular Technology, vol.60, no.1, pp.98-103, 2011.
[14]C. H. Lin, C. L. Chen, Y. H. Lee, S. J. Wang, C. Y. Hsieh, H. W. Huang, and K. H. Chen, “Fast Charging Technique for Li-Ion Battery Charger,” in Proc. of the Electronics, Circuits and Systems IEEE International Conference on , pp. 618-621, 2008.
[15]S. J. Lee, J. H. Kim, J. M. Lee, and B. H. Cho, “The State and Parameter Estimation of an Li-Ion Battery Using a New OCV-SOC Concept,” in Proc. of the Power Electronics Specialists Conference, pp. 2799-2803, 2007.
[16] X. L. Hu, K. J. Tseng, and M. Srinivasan, “Optimization of Battery Energy Storage System with Super-Capacitor for Renewable Energy Applications,” in Proc. of the Power Electronics and ECCE Asia, 8th, pp.1552-1557, 2011.
[17]A. M. Van Voorden, L. M. R. Elizondo, G. C. Paap, J.Verboomen, and L. Van der Sluis, “The Application of Super Capacitors to Relieve Battery-storage systems in Autonomous Renewable Energy Systems,” in Proc. of the Power Tech, IEEE Lausanne, pp. 479-484, 2007.
[18]H. George and Barbehenn “Supercapacitor Charger and Ideal Diode for Power Supply Ride-Through Systems,” LTC4425, LTJournal, 2012.
[19]O. C. Onar and A. Khaligh, “A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems,”IEEE Trans. Smart Grid, vol.3, no.1, pp.296-307, 2012.
[20] 張濟任,利用8051微控制器實現之鋰離子電池快速充電器的研製,碩士學位論文,國立臺北科技大學電機工程系,台北,2010。
[21]李長恩,以數位控制實現之三種鋰離子電池充電法則,碩士學位論文,國立臺北科技大學電機工程系,台北,2011。
[22]陳怡萍,鉛酸與鋰離子蓄電池之電量估測,碩士學位論文,國立中山大學電機工程系,高雄,2007。
[23]B. V. R. Chowdari, “Nano-Materials as Electrodes for Li-ion Batteries,” Department of Physics National University of Singapore.
[24]G. Zorpette, “Super Charged [Ultracapacitors],” Spectrum, IEEE, vol.42, no.1, pp.32-37, 2005.
[25]J. Schindall, “The Charge of the Ultracapacitors,” Spectrum, IEEE, vol.44, no.11, pp.42-46, 2007,
[26]林宜慶,超級電容器技術發展與應用趨勢分析(Part1),車輛中心,國際合作發展部,台灣。
[27]農穀珍,超級電容器電極材料的製備及電化學性能研究,碩士學位論文,大連理工大學,中國,2009。
[28]劉小寶,超級電容器應用及能量管理技術,碩士學位論文,南京航空航太大學,中國,2009。
[29]台灣立凱電能科技股份有限公司,二次電池比較表,http://www.aleees.com/tw/support/engpp1.pdf。
[30]許家興,電動車電池類型與電池基礎較介紹,財團法人車輛研究測試中心,台灣,2009。
[31]黃泳盛,Discussion of Supercapacitor Technologies,佳榮能源科技股份有限公司,台灣,2012。
[32]廖國翔,超級電容的過去、現在與未來,碩士學位論文,國立中正大學機械工程系,嘉義,2007。
[33]王證誌,質子交換膜燃料電池應用於混合動力車輔助電力的探討,碩士學位論文,國立成功大學系統及船舶機電工程學系,台南,2007。
[34]S. H. Marin, C. J. Ellenbogen, “Supercapacitors: A Brief Overview,” 2006.
[35]I. D. Oltean, A. M. Matoi and E. Helerea, “A Supercapacitor Stack - Design and Characteristics,” in Proc. of the Optimization of Electrical and Electronic Equipment, 12th, pp.214-219, 2010.
[36]J. H. Kim, S. J. Lee, J. M. Lee, and B. H. Cho, “A New Direct Current Internal Resistance and State of Charge Relationship for the Li-Ion Battery Pulse Power Estimation,” in Proc. of the Power Electronics, 7th Internatonal Conference, pp. 1173-1178, 2007.
[37]A. Baba and S. Adachi, “State of Charge Estimation of Lithium-Ion Battery Using Kalman Filters,” in Proc. of the Control Applications International Conference, pp. 409-414, 2012.
[38]V. Pop, H. J. Bergveld, P. H. L. Notten, and P. P. L. Regtien, “State-of-Charge Indication In Portable Applications,” in Proc. of the Industrial Electronics International Symposium, vol.3, pp. 1007-1012, 2005.
[39]戴鵬栩,感測控制法則應用於機器人之自動充電系統,國立雲林科技大學電機工程系,雲林,2010。
[40]LTC4425 datasheet, “Linear SuperCap Charger with Current-Limited Ideal Diode and V/I Monitor,” Linear Technology, 2010.
[41]LTC4052 datasheet, “Lithium-Ion Battery Pulse Charger with Overcurrent Protection,” Linear Technologyx, 2001.
[42]TPS61222 datasheet, “Texas Instruments Low Input Voltage Step-Up Converter,” Texas Instruments, 2009.
[43]N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics: Converters Application and Design, 3rd edition, John Wiley & Sons, 1995.
[44]梁適安,交換式電源供給器之理論與實務設計,全華出版社,台北,2006,第43-62頁。
[45] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2rd edition, Kluwer Academic Publishers, 2001.
[46]NR4018T4R7M datasheet, “Taiyo-Yuden SMD Power Inductor,” Taiyo-Yuden.
[47]Si2303P datasheet, “P-Channel MOSFET,” Vishay.
[48]UCC27324 datasheet, “Texas Instruments High Speed Low-Side Power MOSFET Drivers,” Texas Instruments, 2002.
[49]LM358P datasheet, “Texas Instruments Low Power Dual Operational Amplifiers,” Texas Instruments, 2004.
[50]Microchip, “dsPIC33FJ06GS202 datasheet,” 2009.
[51]Microchip, “dsPIC33F Family Reference Manual,” 2010.
[52]曾百由,數位訊號控制器原理與應用,宏友圖書,台北,2005。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔