(100.25.42.117) 您好!臺灣時間:2021/04/21 17:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏本帝
研究生(外文):Pen-Ti Wei
論文名稱:應用交叉耦合控制設計於強化全車懸吊效能之主動式懸吊控制系統
論文名稱(外文):Application of Cross-Coupling Control Design on Active Suspension Control System for Enhancing Full-Car Suspension Performance
指導教授:李俊賢李俊賢引用關係
口試委員:許佳興黃正民蔣欣翰
口試日期:2013-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:76
中文關鍵詞:交叉耦合控制最佳化控制舒適度穩定度1/4車主動式懸吊系統
外文關鍵詞:Cross-Coupling Control(CCC)Optimal controlComfortStabilityQuarter-car active suspension system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
在車輛的懸吊系統裡,由於主動式懸吊系統的設計主要基於1/4車垂直動態模型發展獨立主動式懸吊控制系統,因此控制的目標為達到每個1/4車體的最小晃動量,並未考慮全車動態的影響以及整體的乘車舒適度。在1/4車懸吊系統的設計上已有多位學者提出能夠改善舒適度及晃動量的方法,但對於整體車輛來說單一懸吊系統的設計是不夠的,為了提升全車的乘坐舒適度及車身控制的穩定性,因此本論文提出ㄧ套使用交叉耦合控制的控制架構來協調四個獨立的懸吊系統提升全車的控制效能。
初步測試利用PD-type的CCC控制架構設計來協調四個獨立的主動式懸吊系統的運作,透過車體Pitch、Roll及Suspension deflection的動態資訊,以及各個懸吊系統的行程資訊,計算出補償控制力輔助原本四個獨立的主動式懸吊系統達到更好的全車動態穩定性控制。本文所提供之PD-type的CCC控制系統架構設計可以大幅地降低全車懸吊系統設計的複雜度,並確實地能夠提升對車身控制的穩定性,但在部份車速的控制下所得到的舒適度會有所犧牲,因此針對此問題提出Fuzzy-type的CCC控制架構,由於模糊邏輯控制器有較明顯的強健姓,相較於PD控制器能操作在較寬的工作條件下。透過CarSim虛擬車輛動態軟體的模擬驗證,可看到本系統能有效地降低全車車體的晃動量,並能維持主動式懸吊系統較佳的舒適度。


In conventional vehicle suspension systems, the active suspension control design is mainly based on a quarter-car dynamic model to develop four independent active suspension control systems. As a result, the objective is only to achieve the minimum shaking of each quarter-car without considering the dynamics of the full-car and the overall ride quality. A number of researchers so far have proposed to improve the quality and shaking method in the quarter-car suspension system, but it is limited for an independent suspension system to perform a better full-car ride quality and body control stability. This thesis presents an effective control method using cross-coupling control (CCC) to coordinate four independent suspension systems to enhance the performance of the full-car control.
This study first uses PD-type control architecture of CCC to coordinate the operation of the four independent active suspension systems. Through the dynamic information including the pitch, roll, and suspension deflection, we can calculate the compensation force in order to assist the four independent active suspension system to achieve a better full-car control performance for the vibration attenuation. This thesis provides PD-type control system architecture from the CCC can greatly reduce the design complexity of the full-car suspension system and enhance the full-car motion stability. However, the ride quality will be sacrificed under some vehicle speeds. Due to the evident robustness of fuzzy logic control under a much wider range of operating conditions than PD controllers, this thesis proposes the fuzzy-type control architecture in CCC to solve this problem. The study further uses CarSim to verify the result, and through simulation our system can effectively reduce the vibration of the whole car and still maintain the better ride quality of active suspension systems.


中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 1
1.3 文獻回顧 2
1.4 研究方法 3
1.5 研究貢獻 4
1.6 論文架構 4
第二章 車輛懸吊系統 5
2.1 車輛懸吊系統介紹 5
2.2 主動式懸吊系統架構 9
第三章 LQR與Fuzzy控制理論介紹 11
3.1 最佳控制理論 11
3.1.1 LQR公式化的使用和H2最佳控制的關係 11
3.2.1 LQR控制演算法 12
3.2 Fuzzy控制理論 13
3.2.1 模糊邏輯控制理論介紹 13
3.2.2 模糊邏輯控制器 13
第四章 Cross-Coupling Control四分之一車主動式懸吊系統架構 17
4.1 Cross-coupling Control系統理論介紹 17
4.1.1 Linear contour 19
4.2 PD-type的CCC控制架構 20
4.3 Fuzzy-type的CCC控制架構 26
第五章 模擬結果與分析 34
5.1 CarSim軟體介紹 34
5.2 系統參數及測試路面 39
5.2.1 系統參數 39
5.2.2 測試路面 41
5.3 Bump路面測試結果 45
5.4 Bounce sine sweep路面測試結果 52
5.5 Chassis twist road half sine wave路面測試結果 59
5.6 Fishhook操作測試結果 66
5.7 討論與未來發展 72
5.7.1 討論 72
5.7.2 未來發展 73
第六章 結論 74
6. 1 結論 74
參考文獻 75


[1]A. G. Thompson and C. E. M. Pearce, “Direct computation of the performance index for an optimally controlled active suspension with preview applied to a half-car model,” Vehicle System Dynamics, vol. 35, no. 2, pp. 121-137, Feb. 2001.
[2]C. J. Huang and J. S. Lin, “Nonlinear active suspension control design applied to a half-car model,” in Proc. IEEE International Conference on Networking, Sensing & Control, ICNSC’04, vol. 2, Taipei, Taiwan, 21-23 March 2004,pp. 719-724.
[3]H. Zhang, K. Yuan and S. Mei, “Fuzzy logic cross-coupling control of wheeled mobile robots,” in Proc. IEEE International Conference on Mechatronics and Automation IMCA’06, Luoyang, China, 25-28 Jun. 2006, pp. 740-744.
[4]J. Feng, S. Zheng and F. Yu, “Bandwidth-limited active suspension controller for an off-road vehicle based on co-simulation technology,” Frontiers of Mechanical Engineering in china, vol. 3, no. 1, pp. 111-117, March 2008.
[5]M. Makatchev, S. Y. T. Lang, S. K. Tso and J. J. McPhee, ”Cross-coupling control for slippage minimization of a four-wheel-steering mobile robot,” in Proc. International Symposium on Robotics ISR’00, Montreal, Canada, 14-17 May 2000, pp. 42-47.
[6]M. C. Smith and S. J. Swift, “Power dissipation in automotive suspensions,” Vehicle System Dynamics, vol. 49, nos. 1-2, pp.59-74, Jan.-Feb 2011.
[7]N. Zhang, W. A. Smith and J. Jeyakumaran, “Hydraulically interconnected vehicle suspension : background and modeling,” Vehicle System Dynamics, vol. 48, no. 1, pp.17-40, Jan. 2010.
[8]R. Rajamani, Vehicle Dynamics and Control, Springer, 2006, pp. 287-355.
[9]R. Darus and Y. Md. Sam, “Modeling and control active suspension system for a full car model,” in Proc. IEEE International Colloquium on Signal Processing & Its Applications CSPA’09, Kuala Lumpur, Malaysia, 6-8 March 2009,pp. 13-18.
[10]S. Ikenaga, F. L. Lewis, L. Davis, J. Campos, M. Evans and S. Scully, “Active suspension control using a novel strut and active filtered feedback: design and implementation,” in Proc. IEEE International Conference Control Applications CCA, vol. 2, Hawaii, USA, Aug. 1999, pp. 1502-1508.
[11]S. Ikenaga, F. Lewis, J. Campos and L. Davis, “Active suspension control of ground vehicle based on a full-vehicle model,” in Proc. IEEE American Control Conference ACC, vol. 6, Chicago, IL, American, 28-30 Jun. 2000, pp. 4019-4024.
[12]S. S. Yeh and P. L. Hsu, “Theory and applications of the robust cross-coupled control design,” ASME Transaction, Journal of Dynamic Systems, Measurement, and control, vol. 121, no. 3, pp. 524-530, Jun. 1999.
[13]W. A. Smith, N. Zhang and W. Hu, “Hydraulically interconnected vehicle suspension: handling performance” Vehicle System Dynamics, vol. 49, nos. 1-2, pp.87-106, Jan.-Feb 2011.
[14]Y. Koren, “Cross-coupled biaxial computer control for manufacturing systems,” ASME Transaction, Journal of Dynamic System, Measurement and Control, vol. 102, no. 4, pp. 265–272, Dec. 1980.
[15]Y. Koren and C. C. Lo, “Variable-gain cross-coupling controller for contouring,” CIRP Annals-Manufacturing Technology, vol. 40, no. 1, pp. 371–374, Jan. 1991.
[16]Y. Koren and S. Jee, “Fuzzy logic cross-coupling control,” CIRP Proceedings-Manufacturing Systems, vol. 25, no. 1, pp. 104–108, Sep. 1995.
[17]Z. Yi, M. M. Xia, J. Y. Qin and Z. Hu, “Research on co-simulation using ADAMS and MATLAB for automobile active suspension system,” International Conference on Computer Application and System Modeling ICCASM, vol. 14, Taiyuan, Oct. 2010, pp.366-370.
[18]葉釗甫,,CNC剛性攻牙製程之同步運動控制器設計與實現,碩士論文,國立交通大學電控工程研究所,2011。
[19]L. X. Wang,模糊理論與應用,台灣培生教育出版股份有限公司,2006,pp.123-124。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔