跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳伯彥
研究生(外文):Bo-Yan Chen
論文名稱:非線性系統之自組織模糊滑動模式類神經網路控制器
論文名稱(外文):Self-Organizing Fuzzy Sliding-Mode Radial Basis-Function Neural-Network Controller for Nonlinear Systems
指導教授:林震林震引用關係
口試委員:陳雙源連瑞敬
口試日期:2013-01-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:110
中文關鍵詞:非線性系統自組織模糊控制器滑動模式控制徑向基底函數類神經網路
外文關鍵詞:nonlinear systemself-organizing fuzzy controllersliding mode controlradial basis function neural-network
相關次數:
  • 被引用被引用:1
  • 點閱點閱:496
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:1
本研究發展一自組織模糊滑動模式類神經網路控制器, 以控制非線性系統。 用於自組織模糊滑動模式類神經網路控制器裡面的模糊邏輯控制器之輸入變數,是滑動平面以及其變化量,而不是誤差與誤差變化,這能確保系統運行的穩定性。 自組織模糊滑動模式類神經網路控制器不僅削除了使用自組織模糊類神經網路控制器的穩定性問題,也克服了自組織模糊控制器與自組織模糊滑動模式控制器兩者因為參數選擇不適當所產生的問題, 以及在模糊控制器中因定義不適合的隸屬函數和模糊規則所產生的問題。 為了證明所提出的方法之可行性,我們將自組織模糊滑動模式類神經網路控制器用於控制非線性系統, 其包含微制動器系統以及機械手臂系統, 以確定其控制性能。 而模擬結果證實了使用自組織模糊滑動模式類神經網路控制器來控制非線性系統能夠得到比使用自組織模糊控制器, 自組織模糊滑動模式控制器, 和自組織模糊類神經網路控制器更好的控制性能。

This study developed a self-organizing fuzzy sliding-mode radial basis-function neural-network controller (SFSRBNC) for nonlinear systems. The sliding surface and its differential, rather than the error and error change of the system,are used as input variables of a fuzzy logic controller (FLC) in the SFSRBNC, which guarantees the stability of the system operation. The SFSRBNC not only eliminates the stability problem of a self-organizing fuzzy radial basis-function neural-network controller (SFRBC) application,but also overcomes the problem caused by the inappropriate selection of parameters in both a self-organizing fuzzy controller (SOFC) and a self-organizing fuzzy sliding-mode controller (SFSC), and by the determination of unsuitable membership functions and fuzzy rules in an FLC.To demonstrate the feasibility of the proposed method, the SFSRBNC was applied to controlling nonlinear systems which are a microactuator system and a robotic system to determine their control performances.
Simulation results verified that the SFSRBNC gained better control performance than the SFRBC, SFSC, and SOFC for the control of the nonlinear systems.

中文摘要. . . . . . . . . . . . . . . . . . . . . . . .i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . ii
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . .. . . . . . iv
表目錄 . . . . . . . . . . . . . . . . . . . . . . . . vi
圖目錄. . . . . . . . . . . . . . . .. . . . . . . . . vii
第一章緒論 . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究動機與目的 . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . 1
1.2.1 靜電微致動器系統控制之文獻回顧 . . . . . . . . . . 1
1.2.2 機械手臂系統控制之文獻回顧 . . . . . . . . . . . . 3
1.3 本文架構 . . . . . . . . . . . . . . . . . . . . . . 4
第二章系統的數學模式 . . . . . . . . . . . . . . . . . . 5
2.1 平行板式靜電微致動器系統簡介 . . . . . . . . . . . . 5
2.1.1 平行板式靜電微致動器之動態方程式 . . . . . . . . . 5
2.1.2 平行板式靜電微致動器之吸附效應 . . . . . . . . . . 7
2.2 機械手臂系統簡介 . . . . . . . . . . . . . . . . . .10
2.2.1 二軸機械手臂系統之動態方程式 . . . . . . . . . . .10
2.2.2 三軸機械手臂系統之動態方程式 . . . . . . . . . . .14
第三章控制器的設計. . . . . . . . . . . . . . . . . . . 18
3.1 自組織模糊控制器 . . . . . . . . . . . . . . . . . 18
3.1.1 模糊控制理論 . . . . . . . . . . . . . . . . . . .18
3.1.2 自組織模糊控制器的設計 . . . . . . . . . . . . . .21
3.1.3 應用於系統之自組織模糊控制器的設計. . . . . . . . 25
3.2 自組織模糊滑動模式控制器 . . . . . . . . . . . . . .26
3.2.1 滑動模式控制理論 . . . . . . . . . . . . . . . . .27
3.2.2 應用於控制系統之自組織模糊滑動模式控制器的設計. . 29
3.3 自組織模糊類神經網路控制器 . . . . . . . . . . . . .31
3.3.1 徑向基底函數類神經網路. . . . . . . . . . . . . . 31
3.3.2 應用於控制系統之自組織模糊類神經網路控制器的設計. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 自組織模糊滑動模式類神經網路控制器 . . . . . . . . .36
3.4.1 應用於控制系統之自組織模糊滑動類神經網路控制器的設計. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
第四章數值模擬結果與分析. . . . . . . . . . . . . . . . 38
4.1 平行板靜電微致動器系統之數值模擬分析. . . . . . . . 38
4.1.1 SOFC 與 SFRBNC 之控制性能比較 . . . . . . . . . . 39
4.1.2 SFSC 與 SFSRBNC 之控制性能比較 . . . . . . . . . .54
4.2 二軸機械手臂系統之數值模擬分析. . . . . . . . . . . 68
4.2.1 SOFC 與 SFRBNC 之控制性能比較 . . . . . . . . . . 69
4.2.2 SFSC 與 SFSRBNC 之控制性能比較 . . . . . . . . . .83
4.3 三軸機械手臂系統之數值模擬分析. . . . . . . . . . . 96
4.3.1 SOFC 與 SFSC 之控制性能比較 . . . . . . . . . . . 97
第五章結論. . . . . . . . . . . . . . . . . . . . .. . 103
5.1 本研究之結論. . . . . . . . . . . . . . . . . . . .103
參考文獻. . . . . . . . . . . . . . . . . . . . . . . .105
著作發表. . . . . . . . . . . . . . . . . . . . . . . .110

[1] H. C. Nathanson, W.E. Newell, R.A. Wickstrom, and J. R. Davis, “ The Resonant Gate Transistor, ” IEEE Transactions on Electron Devices, Vol. 14, 1967, pp. 117-133.
[2] H. H. Woodson and J. R. Melchez’zr, Electromechanical Dynamics, Part 1 : Discrete
System, Chap. 3, John Wiley, New York, 1968.
[3] J. Seeger, S. Crary, “ Stabilazation of electrostatically actuated mechanical devices,
”in Proc. 9th International Conf. Solid-State Sensors and Actuators (Transducers’
97), Chicago, IL, 1997, pp. 1133-1136.
[4] J. Seeger, B. Boser, “ Dynamics and control of parrellel-plate actuators beyound the
electrostatic instability,” in Proc. 10th International Conf. Solid-State Sensors and
Actuators (Transducers’99), Sendai, Japan, 1999, pp. 474-477.
[5] S. C. Lu, GK Fedder, “ Position control of parallel-plate microactuators for probebased
data storage, ” Journal of Microeletromechanical Systems 2004, 2004, pp.
759-769.
[6] L. Rocha, E. Cretu, and R. Wolffenbuttel, “ Using dynamic voltage drive in a
parallel-plate electrostatic actuator for full-gap travel range and positioning, ” IEEE
Journal of Microelectromechanical Systems, Vol. 15, no. 1, 2006, pp. 69-83.
[7] S. Bermejo, L. Castaner, “ Dynamics of MEMS electrostatic driving using a photovoltaic
source, ” Sensors and Actuators A: Physical, Vol. 121, no. 1, 2005, pp.
237-242.
[8] J. Seeger, B. Boser, “ Charge control of parallel-plate, electrostatic actuators and
the tip-in instability, ” IEEE Journal of Microeletromechanical Systems, Vol. 12,
no. 5, 2003, pp. 656-671.
[9] D.Maithripala, J. Berg, andW. Dayawansa, “ Control of an electrostaticmicroeletromechanical
system using static and dynamic output feedback, ” ASME Journal of Dynamic
Systems, Measurement, and Control, Vol. 127, no. 3, 2005, pp. 443-450.
[10] K. O. Owusu, F. L. Lewis, “ Solving the Pull-in Instability Problem of ElectrostaticMicro-
actuators using Nolinear Control Techniques, ” Proceedings of the 2nd
IEEE International Conference on Nano/Micro Engineered andMolecular Systems,
Bangkok, Thailand, 2007, pp. 1190-1195.
[11] G. Zhu, L. Saydy, “ Robust output feedback control of an electrostatic microactuator,
” Proceeding of the American Control Conference, New York City, NY,
2007, pp. 3192-3197.
[12] M. Vagia, G. Nikolakopoulos, and A. Tzes, “ Design of a robust PID-control switching
scheme for an electrostatic micro-actuator , ” Control Engineering Practice,
Vol. 16, no. 11, 2008, pp. 1321-1328.
[13] Li, W. and Liu, P. , “ Robust adaptive tracking control of uncertain electrostatic
micro-actuators with H-infinity performance, ” Mechatronics, Vol. 19, no. 5, 2009,
pp. 591-597.
[14] F. N. Martins and W. C. Celeste, R. Carelli, M. Sarcinelli-Filho, T. F. Bastos-Filho,
“ An adaptive dynamic controller for autonomous mobile robot trajectory tracking,
” Control Engineering Practice Article in Press, 2008.
[15] S. Alavandar and M. J. Nigam, “ Fuzzy PD+I control of a six DOF robot manipulator,
” Industrial Robot: An International Journal , Vol.35, 2008, pp. 125 - 132.
[16] J. Velagic, A. Aksamovic, “ Fuzzy logic system for position control and current
stabilization of a robot manipulator, ” EUROCON 2005 - The International Conference
on Computer as a Tool I, art. no. 1629929, 2005, pp. 334-337.
[17] J. Lin, “ Jierarchical Fuzzy logic Controller for a Flexible link Robot Arm Performing
Constrained Motion Tasks, ” IEEE Proceedings Control Theory and Application,
Vol. 150, 2003, pp. 355 - 364.
[18] A. Khalate, G. Leena and G. Ray, “ An Adaptive Fuzzy Controller for Trajectory
Tracking of Robot Manipulator, ” Intelligent Control and Automation, Vol. 2, no.
4, 2011, pp. 364-370.
[19] A. A. Eftekharian and H. Sayyaadi, “ Design of mixed fuzzy-GA controller for
SCARA type robot, ” IEEE International Conference on Intelligent Robots and
Systems, art. no. 4058706, 2006, pp. 2173-2178.
[20] T. J. Procky, E. H. Mammdani, “ Self-organizing Proess Controller, ” Automatica,
Vol. 15, 1979, pp. 15-30.
[21] J. Lin, R. J. Lian, “Stability indices for a self-organizing fuzzy controlled robot: A
case study,” Engineering Applications of Artificial Intelligence, ” Vol 23, Issue 6,
2010, Pp. 1019 1034.
[22] H. Wu, and H. Handroos, “ Hybrid fuzzy self-tuning PID controller for a parallel
manipulator, ” Proceedings of the World Congress on Intelligent Control and
Automation 3, 2004, pp. 2545-2549.
[23] 廖慶豐, 機械手臂運動之滑動模式自組織模糊控制器, 碩士論文, 國立臺北科技大學機電整合研究所, 台北, 2008.
[24] Z. Guo, “ The application of modified fuzzy sliding mode controllers to robotic
manipulators, ” 2007 IEEE International Conference on Control and Automation,
art. no. 4376710, 2008, pp. 1997-2002.
[25] H. D. Patino, R. Carelli, and B. R. Kuchen, “ Neural network for advanced control
of robot manipulators, ” IEEE Transactions on Neural Networks, Vol. 13, no. 2,
2002, pp. 343 - 354.
[26] X. Ren, A. B. Rad, F. L. Lewis, “ Neural Network-Based Compensation Control
of Robot Manipulators with Unknown Dynamics, ” American Control Conference,
ACC 07, 2007, pp. 13 - 18.
[27] K. V. Lakshmi, and Mashuq-un-Nabi, “ An adaptive Neuro-Fuzzy control approach
for motion control of a robot arm, ” International Conference on Informatics, Electronics
and Vision, 2012, pp. 832 - 836.
[28] M. Gronle, G. Zhu, and L. Saydy, “ Sliding Mode Tracking Control of an Electrostatic
Parallel-Plate MEMS, ” IEEE International Conference on Advanced Intelligent
Mechatronics, 2010, pp. 999 - 1004.
[29] S. Sebturia, Microsystem Design, Norwell, MA: Kluwer Academic, 2002.
[30] J. Pont-Nin, A. Rodriquez, and L. Castaner, “ Voltage anf pull-in time in current
drive of electrostatic actuators, ” J. Microelectromech. Syst., Vol. 11, 2002, pp.
196-205.
[31] D. H. S.Maithripala, J.M. Berg, andW. P. Dayawansa, “ Control of an electrostatic
MEMs using staic and dynamic output feedback, ” ASME Journal of Dynamic Systems,
Measurement and Control, Vol. 127, 2005, pp. 443-450.
[32] D. Driankow, H. Hellendoorn, M. Reinfrank, “ An introduction to fuzzy control ” ,
Springer-Verlag Berlin Heidelberg, 1993.
[33] E. H. Mandani, N. Baaklini, “ Descriptive method for deriving control policy in a
fuzzy logic controller, ” Elec. Letters 11 25/6, 1975, pp. 625-626.
[34] D. A. Linkens, S. B. Hasnain, “ Self-organizing fuzzy logic control and application
to muscle relaxant anaesthesia , ” IEE Proceedings D: Control Theory and
Applications 138 (3), 1991, pp. 274-284.
[35] L. Ljung, “ System identification: theory for the user, ” Information and System
Sciences Series. Prentice-Hall, New York, 1987.
[36] J. J. E. Slotine, W. Li, “ Applied nonlinear control, ” New York, London: Prentice-
Hall Inc, 1991.
[37] G. C. Hwang, S. C. Lin, “ A stability approach to fuzzy control design for nonlinear
systems, ” Fuzzy Sets and Systems, 48(3), 1992, pp. 279-287.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊