跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 01:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李永達
研究生(外文):Ly Vinh Dat
論文名稱:使用電磁氣閥於汽油引擎之效率改善
論文名稱(外文):Efficiency Improvement in SI Engines with Electromagnetic Valve Train
指導教授:蕭耀榮蕭耀榮引用關係
口試委員:劉達全蕭俊祥鍾證達陳立文
口試日期:2013-01-04
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:130
中文關鍵詞:可變汽門正時電子氣閥汽缸休止技術無凸輪引擎無節流閥引擎緩接觸磁通量引擎效率
外文關鍵詞:Variable valve timingelectromagnetic valve traincylinder deactivationcamless engineunthrotted enginesoft landingmagnetic fluxengine efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:535
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
改善火花點火SI引擎中燃油消耗與廢氣排放等問題對於車輛產業研究是一門相當重要的議題。目前已有許多解決方法如混合動力、電動車、燃料電池、GDI直噴、VCR可變壓縮比等技術,而針對SI引擎來說,VVT可變汽門正時與CDA汽缸休止技術可以最有效且直接改善油耗與廢排的性能表現。以EMV電子氣閥技術應用的引擎可以消除節流閥的流量限制,而使用根據不同負載下停用部分汽缸的汽缸休止技術也可擁有較高的指示平均有效壓力IMEP,相對的也能大幅降低pumping loss。另一方面,電子氣閥能達到連續性的控制氣門正時,也都能更加改善引擎效率、提升性能表現。
目前就眾多VVT與CDA的技術當中,以永磁電磁複合式電子氣閥 ( PM/EM Hybrid EMV ) 最有發展潛力。為克服傳統EMV的缺點,本研究將探討一種新型永磁電磁複合式電子氣閥,使用磁路分析軟體設計最佳化參數。並針對SI引擎的汽門動態響應提出EMV汽門緩接觸控制策略。而利用永磁的磁力吸附汽門電樞並以驅動電流釋放的控制方法,比起傳統EMV機構可以更有效的達到節能效果。

  本研究另外針對無節流閥SI引擎之循環建立動態模型,並模擬包含EMV電子氣閥與汽缸休止技術,而模擬結果顯示出在不同轉速下的最佳汽門正時:進氣閥門關閉的最佳正時隨著引擎轉速有線性的變化,而開啟的時機對引擎性能並沒有顯著的影響。另外本研究指出引擎在不同負荷下進行汽缸休止模式也可成功的提高引擎效率,並針對引擎全範圍的負載設計出不同的汽缸休止控制策略。結果顯示引擎於低負載時令兩汽缸進行休止 (50% CDA) 可明顯改善燃油消耗量,而引擎中負載時使單汽缸休止 (25% CDA) 可以讓燃油消耗有最佳表現。SI引擎搭配恰當的VVT與CDA控制策略,可使其引擎效能於低負載時增加30%以上,中負載時增加11.7%。


Improving fuel consumption and emission in SI engines are an important issue for engine researchers and manufacturers. There are many methods to solve these problems as hybrid vehicle, electric vehicle, fuel cell, new energy, gasoline direct injection (GDI), variable ratio compression (VCR), etc. Meanwhile, variable valve timing (VVT) and cylinder deactivation (CDA) are promising methods in reducing fuel consumption and emission in SI engines. An SI engine which uses electromagnetic valve train (EMV) will eliminate flow restriction from the throttle valve and produce higher indicated mean efficiency pressure (IMEP) due to the disabling of some of the working cylinders at part load. Therefore, pumping loss can be significantly reduced at part-load conditions. In addition, duration and timing of valve events are variably controlled at different operating conditions. This contributes to the improvement of engine efficiency.
Several techniques have been developed to perform VVT and CDA. An EMV with permanent magnet and electromagnetic coils (PM/EM) installed together is the most potential. In this study, a new hybrid EMV with PM/EM, which significantly differs from existing EMVs, has been designed to overcome the drawbacks of conventional EMVs. Magnetic simulation has been applied to analyze the magnetic flux and to optimize EMV parameters. Moreover, the study presents soft landing control strategies that can fully satisfy the valve dynamics in SI engines. The way of utilizing PM and optimal actuating current to catch and release valves has many advantages in energy consumption for valve catching and releasing when compared with other EMVs
The study also develops a dynamic model of an unthrottled camless SI engine to simulate the engine cycle. The model uses an EMV system that allows valve train control and cylinder deactivation techniques to be carried out in simulation flexibly. The simulated results show the optimal valve timing for different engine speeds. The optimal timing of intake valve closing depends on engine speed linearly, while the intake valve opening insignificantly influences engine performance. Additionally, this study also shows that cylinder deactivation modes can be successfully applied in improving engine efficiency at different engine loads. Different cylinder deactivation strategies have been applied for the full range of engine loads. The study concludes that the two-cylinder deactivation mode (50% CDA) considerably improves fuel consumption at low engine load. Meanwhile, one-cylinder deactivation (25% CDA) is an optimal fuel economy mode at medium engine load. With proper uses of VVT and CDA strategies, the efficiency of an SI engine can be increased more than 30% at low engine load and 11.7 % at medium engine load.


CONTENTS

摘 要 i
ABSTRACT iii
ACKNOWLEDGMENTS v
CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii
CHAPTERS
1. INTRODUCTION 1
1.1 Overview 1
1.2 The literature review 4
1.3 The objective and scope of research 10
1.4 Outline of dissertation. 11
2. DYNAMIC ANALYSES IN SI ENGINES WITH
ELECTROMAGNETIC VALVE TRAIN 13
2.1 Engine model design 13
2.2 Manifold dynamics 14
2.2.1 Intake manifold 14
2.2.1.1 Manifold head 16
2.2.1.2 Manifold runner 18
2.2.1.3 Cylinder 19
2.2.1.4 Valve profile 19
2.2.2 Exhaust manifold 23
2.2.3 Frictional losses 24
2.3 In - Cylinder dynamics 24
2.3.1 Combustion heat release 25
2.3.2 Heat transfer 27
2.4 Engine performance 28
2.4.1 Work done 28
2.4.2 Friction 28
2.4.3 Torque and power 29
2.4.4 Fuel consumption and efficiency 30
3. OPTIMAL DESIGN FOR ELECTROMAGNETIC VALVE
TRAIN SYSTEM 32
3.1 Introduction 32
3.2 Structure and operation principle 33
3.3 Electromagnetic valve actuator design 35
3.3.1 Specification of EMV system 35
3.3.1.1 Transition time 35
3.3.1.2 Soft landing 36
3.3.1.3 Space limit 37
3.3.2 Spring design 37
3.3.3 Armature and valve design 38
3.3.4 Permanent magnet 41
3.3.5 Electromagnetic coil 42
3.4 System model 46
3.4.1 Electrical subsystem 46
3.4.2 Mechanical subsystem 47
3.4.3 Electromagnetic subsystem 48
3.5 Magnetic field analysis 50
3.5.1 Introduction of the finite element tool 50
3.5.2 Optimization of parameters in EMV design 51
3.5.2.1 Permanent magnet 53
3.5.2.2 Armature 57
3.5.2.3 Electromagnetic coil 62
3.5.3 Flux density distribution 66
3.5.4 Holding force 69
4. ELECTROMAGNETIC VALVE TRAIN DYNAMIC ANALYSES 71
4.1 Introduction 71
4.2 Dynamic analyses for electromagnetic valve train 72
4.3 Soft landing control for EMV actuator 77
4.3.1 Control by fuzzy logic 77
4.3.2 Control by pulsed current 82
4.4 Energy consumption for EMV 86
4.5 Conclusions 88
5. EFFICIENCY IMPROVEMENT IN ENGINE WITH EMV 89
5.1 Introduction 89
5.2 The optimal VVT for engine performance 90
5.2.1 The effects of the intake valve closing timing 90
5.2.2 The effects of the intake valve opening timing 93
5.3 The effects of cylinder deactivation on fuel consumption at different
engine loads 97
5.3.1 At low engine load 98
5.3.2 At medium engine load 100
5.3.3 At full range of engine load 102
5.4 Conclusions 104
6. CONCLUSIONS AND DRIRECTIONS FOR FUTURE WORK 105
6.1 Conclusions 105
6.2 Directions for future work 107
REFERENCES 108
APPENDIX A: Published papers 114
APPENDIX B: Glossary of symbols, subscripts, and abbreviations 117
APPENDIX C: Designed parameter analyses 123

REFERENCES

[1]O. A. Kutlar, H. Arslan, and A. T. Calik, “Methods to Improve Efficiency of Four Stroke, Spark Ignition Engines at Part Load,” Energy Conversion and Management, vol. 46, no. 20, pp. 3202–3220, Dec. 2005.
[2]N. Milovanovic, D. Blundell, S. Gedge, and J. Turner, “Cam Profile Switching ( CPS ) and Phasing Strategy vs Fully Variable Valve Train ( FVVT ) Strategy for Transitions between Spark Ignition and Controlled Auto Ignition Modes,” SAE 2005-01-0766, 2005.
[3]G. Maas, H. Neukirchner, O. Dingel, and O. Predelli, “Potential of an Innovative , Fully Variable Valvetrain,” SAE 2004-01-1393, 2004.
[4]M. Sellnau, T. Kunz, J. Sinnamon, and J. Burkhard, “2-step Variable Valve Actuation : System Optimization and Integration on an SI Engine,” SAE 2006-01-0040, 2006.
[5]W. S. Chang, T. A. Parlikar, M. D. Seeman, D. J. Perreault, J. G. Kassakian, T. A. Keim, and E. Systems, “A New Electromagnetic Valve Actuator,” in IEEE Transactions on Power Electronic in Transportation, 2002, pp. 109–118.
[6]W. S. Chang, T. Parlikar, J. G. Kassakian, and T. A. Keim, “An Electromagnetic Valve Drive Incorporating a Nonlinear Mechanical Transformer,” SAE Technical Paper Series 2003-01-0036, 2003.
[7]J. Allen and D. Law, “Production Electro-Hydraulic Variable Valve-Train for a New Generation of I . C . Engines,” SAE 2002-01-1109, 2002.
[8]E. Ellison, S. Maiano, “italiaspeed.” [Online]. Available: www.italiaspeed.com/2004/cars/alfa_romeo/09/uniair/1109.html.
[9]Z. Sun and X. He, “Development and Control of Electro-hydraulic Fully Flexible Valve Actuation System for Diesel Combustion Research,” SAE 2007-01-4021, 2007.
[10]Z. D. Lou, “Camless Variable Valve Actuation Designs with Two-Spring Pendulum and Electrohydraulic Latching,” SAE 2007-01-1295, 2007.
[11]V. Giglio, B. Iorio, G. Police, and A. Gaeta, “Analysis of Advantages and of Problems of Electromechanical Valve Actuators,” SAE 2002-01-1105, 2002.
[12]C. Gray, “A Review of Variable EngineValve Timing,” SAE Paper 880386, 1988.
[13]V. Picron, Y. Postel, E. Nicot, and D. Durrieu, “Electro-Magnetic Valve Actuation System: First Steps toward Mass Production,” SAE Paper 2008-01-1360, 2008.
[14]H. Hong, G. B. Parvate-Patil, and B. Gordon, “Review and Analysis of VariableValve Timing Strategies-Eight Ways to Approach,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 218, no. 10, pp. 1179–1200, Oct. 2004.
[15]D. Cleary and G. Silvas, “Unthrottled Engine Operation with Variable Intake Valve Lift , Duration , and Timing,” SAE Technical Paper Series 2007-01-1282, 2007.
[16]E. Sher and T. Bar-Kohany, “Optimization of Variable Valve Timing for Maximizing Performance of an Unthrottled SI Engine — A Theoretical Study,” Energy, vol. 27, pp. 757–775, 2002.
[17]C. L. Myung, K. H. Choi, I. G. Hwang, K. H. Lee, and S. Park, “Effects of Valve Timing and Intake Flow Motion Control on Combustion and Time-Resolved HC & NOx Formation Characteristics,” International Journal of Automotive Technology, vol. 10, no. 2, pp. 161–166, 2009.

[18]Cylinder Deactivation Reborn, “cylinder deactivation.” [Online]. Available: http://autospeed.com.au/cms/title_Cylinder-Deactivation- Reborn-Part-1/A_2618/article.html.
[19]P. Kreuter, P. Heuser, J. Reinicke-Murmann, R. Erz, P. Stein, and U. Peter, “Meta - CVD System An Electro-Mechanical Cylinder and Valve Deactivation System,” SAE Paper 2001-01-0240, 2001.
[20]N. R. Trask, M. Hammoud, M. Haghgooie, T. W. Megli, and W. Dai, “Optimization Techniques and Results for the Operating Modes of a Camless Engine,” SAE Paper 2003-01-0033, 2003.
[21]S. P. Vendan, T. Sathish, and S. Sathishkumar, “Reduction of Fuel Consumption in Multicylinder Engine by Cylinder Deactivation Technique,” vol. 8, no. 3, pp. 15–20, 2009.
[22]M. Fujiwara, K. Kumagai, and M. Segawa, “Development of a 6-Cylinder Gasoline Engine with New Variable Cylinder,” SAE Paper 2008-01-0610, 2008.
[23]Y. Wang, T. Megli, and M. Haghgooie, “Modeling and Control of Electromechanical Valve Actuator,” SAE 2002-01-1106, 2002.
[24]H. J. Ahn, S. Y. Kwak, J. U. Chang, and D. C. Han, “A New EMV System Using a PM/EM Hybrid Actuator,” in Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics., 2005, vol. 1, pp. 329–334.
[25]E. D. Mohamed, “Design and Experimental Investigation on an Electromagnetic Engine Valve Train,” SAE 2011-01-0365, 2011.
[26]J. Rens, R. E. Clark, and G. W. Jewell, “Static Performance of a Polarized Permanent-Magnet Reluctance Actuator for Internal Combustion Engine Valve Actuation,” IEEE Transactions on Magnetics, vol. 42, no. 8, pp. 2063–2070, Aug. 2006.
[27]T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Application of a Permanent Magnet Biased E-Core Reluctance Actuator in a Magnetically Suspended Ceiling Actuator,” IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 2128–2131, 2010.
[28]J. Kim and D. K. Lieu, “Designs for a New, Quick-Response, Latching Electromagnetic Valve,” IEEE International Conference on Electric Machines and Drives, pp. 1773–1779, 2005.
[29]D. T. Vu, Y. Choi, and J. Kim, “Lumped Parameter Modeling and Analysis of Hybrid Magnet Engine Valve Actuator,” International Journal of Precision Engineering and Manufacturing, vol. 11, no. 6, pp. 983–986, Dec. 2010.
[30]J. J. Liu, Y. P. Yang, and J. H. Xu, “Electromechanical Valve Actuator with Hybrid MMF for Camless Engine,” Proceedings of the 17th International Federation of Automatic Control World Congress, pp. 10698 –10703, 2008.
[31]J. Kim and D. K. Lieu, “A New Electromagnetic Engine Valve Actuator with Less Energy Consumption for Variable Valve Timing,” Journal of Mechanical Science and Technology, vol. 21, pp. 602 – 606, 2007.
[32]K. Peterson and A. Stefanopoulou, “Output Observer Based Feedback for Soft Landing of Electromechanical Camless Valvetrain Actuator,” Proceedings of American Control Conference, pp. 1413–1418, 2002.
[33]C. Tai, A. Stubbs, and T.-C. Tsao, “Modeling and Controller Design of an Electromagnetic Engine Valve,” Proceeding of American Conference, pp. 2890–2895, 2001.
[34]J. B. Heywood, Internal Combustion Engines Fundamentals. McGraw-Hill, 1988.
[35]M. S. Ashhab, A. G. Stefanopoulou, J. A. Cook, and M. B. Levin, “Camless Engine Control for a Robust Unthrottled Operation,” SAE 981031, 1998.

[36]J. Novak, “Simulation of the Breathing Process and Air-Fuel Ratio Distribution Characteristics of Three-Valve, Stratified Charge Engines,” SAE Paper No. 770881, 1977.
[37]Y. Shiao and Y. J. Zheng, “The Dynamic Analysis and Actuation of a New Hybrid Electromagnetic Valve for Engines,” Journal of National Taipei University of Technology., vol. 44–2, pp. 1–15, 2012.
[38]Y. Shiao and C. H. Huang, “The Design and Analysis of a New Electromagnetic Valve,” in CSME Conference, Taiwan, 2008.
[39]M. Takizawa, T. Uno, T. Oue, and T. Yura, “A Study of Gas Exchange Process Simulation of an Automotive Multi -Cylinder Internal Combustion Engine,” SAE Transaction, vol. 91, 1982.
[40]M. Katsumata, Y. Kuroda, and A. Ohata, “Development of an Engine Torque Estimation Model : Integration of Physical and,” SAE Technical Paper Series 2007-01-1302, 2007.
[41]G. H. Abd Alla, “Computer Simulation of a Four Stroke Spark Ignition Engine,” Energy Conversion and Management, vol. 43, no. 8, pp. 1043–1061, May 2002.
[42]Barnes and Moss, “A Designer’s Viewpoint,” Proceeding of Conference in Passenger Car Engines, pp. 133–147, 1975.
[43]W. W. Pulkrabek, Engineering Fundamentals of the Internal Combustion Engine, 2nd Ed., vol. 126, no. 1. Prentice Hall, Inc., 2004, p. 198.
[44]L. An, Actuation and Analysis of a New Hybrid Electromagnetic Valve for a Camless Engines, Master Thesis, National Taipei University of Technology, Taiwan, 2011.
[45]Y. J. Zeng, Dynamic Analysis and Testing of an Electromagnetic Valve Train, Master Thesis, National Taipei University of Technology, Taiwan, 2011.
[46]C. Hartwig, O. Josef, and K. Gebauer, “Dedicated Intake Actuator for Electromagnetic Valve Trains,” SAE Technical Paper Series 2005-01-00773, 2005.
[47]J. H. Xu, Design and Fabrication of Electromechanical Valve Actuation Mechanism in a Camless Engine, Master Thesis, National Taiwan University, Taiwan, 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top