跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 21:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周偉廷
研究生(外文):Wei-Ting Chou
論文名稱:主動式懸吊系統之灰預測自組織模糊滑動模式徑向基函數類神經網控制器的設計
論文名稱(外文):Design of a Grey-Prediction Self-Organizing Fuzzy Sliding-Mode Radial Basis-Function Neural-Network Controller for Active Suspension Systems
指導教授:林震林震引用關係
口試委員:陳雙源連瑞敬
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:139
中文關鍵詞:主動式懸吊系統模糊控制自組織滑動模式徑向基函數類神經網路灰色預測
外文關鍵詞:Active suspension systemfuzzy controlself-organizingsliding moderadial basis-function neural networkgrey prediction
相關次數:
  • 被引用被引用:3
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
自組織模糊控制器(self-organizing fuzzy controller, SOFC) 已被應用在控制工程領域上, 然而, 控制過程中SOFC 不易找尋適當的學習速率和權重因子。為了解決這個問題,本研究發展出灰預測自組織模糊滑動模式徑向基函數類神經網路控制器(grey-prediction
self-organizing fuzzy sliding-mode radial basis-function neural-network controller, GPSFSRBNC)。該GPSFSRBNC 利用灰色預測演算法預測系統下一步的誤差做為控制器輸入。它不僅銷除了SOFC 和自組織模糊滑動模式控制器(self-organizing fuzzy slidingmodecontroller, SFSC) 因參數選擇不當引起的問題, 也解決了自組織模糊徑向基函數類神經網路控制器(self-organizing fuzzy radial basis-function neural-network controller,
SFRBNC) 穩定性的問題。此外, 相較於自組織模糊滑動模式徑向基函數類神經網路(selforganizingfuzzy sliding-mode radial basis-function neural-network controller, SFSRBNC), GPSFSRBNC 因擁有預測的特性, 提供了更好的控制性能。GPSFSRBNC 已用於控制主
動式懸吊系統已確定其控制性能。經由模擬結果證實, GPSFSRBNC 比SOFC, SFSC, SFRBNC, SFSRBNC 以及被動式控制, 在乘坐汽車的舒適性及汽車的操控性上達到更好的控制性能。


Self-organizing fuzzy controllers (SOFCs) have been applied to the control engineering fields. However, it is difficult to find appropriate parameters of learning rate and
weighting distribution for the design of an SOFC. To solve the problem, this study developed a grey prediction self-organizing fuzzy sliding-mode radial basis-function neuralnetwork controller (GPSFSRBNC). The GPSFRBNC uses a grey-prediction algorithm to predict the next step error of the system for the controller design. It not only eliminates
the problem caused by the inappropriate selection of parameters in both an SOFC and a self-organizing fuzzy sliding-mode controller (SFSC), but also solves the stability problem of a self-organizing fuzzy radial basis-function neural-network controller (SFRBNC) application. Moreover, as compared with a self-organizing fuzzy sliding-mode radial basis-function neural-network (SFSRBNC), the GPSFRBNC has a predicted property, thereby providing better control performance. The GPSFRBNC was employed to control
an active suspension system to determine its control performance. Simulation results demonstrated that the GPSFSRBNC achieved better control performance than the SOFC,
SFSC, SFRBNC, SFSRBNC as well as passive control, in terms of the ride comfort and the road-holding capability of the vehicle for active suspension control.

目錄
中文摘要
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
誌謝
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
表目錄
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
圖目錄
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
第一章緒論
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究動機與目的
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 懸吊系統分類
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 文獻回顧
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 本文架構
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
第二章系統的數學模式
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 主動式懸吊系統簡介
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 主動式懸吊系統之數學模式
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
第三章控制器的設計
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 模糊控制理論
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 自組織模糊控制器的設計
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 自組織模糊演算法
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
3.2.2 主動式懸吊系統之自組織模糊控制器的設計
. . . . . . . . . . . . . . . . . . . . . . . .18
3.3 自組織模糊滑動模式控制器的設計
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 滑動模式控制理論
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.3.2 主動式懸吊系統之自組織模糊滑動模式控制器的設計
. . . . . . . . . . . . . . . 22
iv
3.4 自組織模糊徑向基類神經網路控制器的設計
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 徑向基底函數類神經網路
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 主動式懸吊系統之自組織模糊徑向基類神經網路控制器的設計
. . . . . . . 27
3.5 主動式懸吊系統之自組織模糊滑動徑向基類神經網路控制器的設計. . . . . . . 28
3.6 灰預測自組織模糊滑動模式徑向基函數類神經網路控制器的設計
. . . . . . . . . 29
3.6.1 GM(1,1) 模型灰色預測
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.2 主動式懸吊系統之灰預測自組織模糊滑動模式徑向基函數類神經網路控制器的設計
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
第四章數值模擬結果與分析
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 正弦波路面擾動之懸吊系統的主動控制
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 凸塊路面擾動之懸吊系統的主動控制
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 隨機路面擾動之懸吊系統的主動控制
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
第五章結論
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.1 本文重要結論
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2 未來展望
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
參考文獻
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

[1] J.K. Lin, K. W. E. Cheng, Z. Zhang, N. C. Cheng, X. D. Xue, M.k. Wong, D.H. Wang, D.H. Wang, Y. J. Bao and J. Lam ,“Integral slidind mode control and its application on Active suspension system,” Power Electronics systems and Applications, June 2011, pp. 1-6.

[2] C. J. Huang, J. S. Lin and C. C. Chen, “Road-adaptive algorithm design of half-car active suspension system ,” Expert Systems with Applications, Vol. 37m Issue 6, June 2010, pp. 4392-4402.

[3] Weichao Sun, Jinfu Li, Ye Zhao, Huijun Gao, “Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic,”
Mechatronics, Vol. 21, Issue 1, February 2011, pp. 250-260.

[4] Hac,Aleksander, Youn,lljoong, “Optimal semi-active suspension with previewbased on a quarter car model,” American Control Conference, June 1991, pp. 433-438.

[5] T. J. Procyk and E. H. Mamdani, “A linguistic self-organizing process controller,” Automatica, Vol. 15, no. 1, Jan. 1979, pp. 15-30.

[6] A. Bartoszewicz, Ron J. Patton, “Sliding mode
control,” International Journal of Adaptive Control and Signal Processing , Vol. 21, Issue 8-9, Nov. 2007, pp. 635-
637.

[7] L. Yingwei, Sundararajan, N, Saratchandra, P,
“Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm,” IEEE Transactions on Neural Networks, Vol. 9, Issue 2, Mar. 1998, pp. 308-318.

[8] 溫坤禮, MATLAB在灰色系統理論的應用, 全華圖書, 2006. 4-1 4-9.

[9] L. A. Zadeh, “Fuzzy sets,” Informat. Control, Vol. 8, 1965, pp.338-353.

[10] H. Li, H. Liu, H. Gao, P. Shi,“Reliable fuzzy control for active suspension systems with actuator delay and fault,” IEEE Transactions on Fuzzy Systems, Vol. 20, Issue
2, April 2012, pp. 342-357.

[11] C. H. Sun Y. T. Wang and C. C. Chang,“Switching T-S fuzzy model-based guaranteed cost control for two-wheeled mobile robot,” International Journal of Innovative
Computing, Information and Control, Vol. 8, Issue 5(A), May 2012.

[12] J. Cao, P. Li and H. Lin, “An Interval Fuzzy
Controller for Vehicle Active Suspension Systems,” IEEE Transations on Intelligent Transportation Systems , Vol. 11,
Issue 4, Dec.2010, pp. 885-895.

[13] C. Y. Ji and J. C. Chang, “The performance Improvements of an Active Suspension with Grey-Fuzzy Algorithm Employing Passenger Car,” International Conference on Artificial Intelligence and Computational Intelligence, Vol. 4, Nov. 2009, pp. 570-574

[14] P. K. Wong, S. J. Huang, T. Xu, H. C. Wong and Z. C. Xie, “Design of a New Suspension System Controlled by Fuzzy-PID with Wheelbase Preview,” Applied Mechanics and Materials, Vol. 192. July 2012, pp. 106-110.

[15] Ming-Kun Chang, “An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators,” Control Cngineering Practice, Vol. 18, Issue 1,January 2010, pp. 13-22.

[16] A. F. Amer, E. A. Sallam, W. M. Elawady, “Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3-DOF planar robot manipulators,” Applied Soft
Computing, Vol. 11, Issue 1, January 2010, pp. 4943-4953.

[17] 葉怡成, 類神經網路模式應用與實作, 儒林圖書出版。

[18] C. T. Lin and C. S. George Lee, “A neural-fuzzy synergism to intelligent systems,”Neural Fuzzy Systems, 1996.

[19] C. M. Lin, and C. F. Hsu, “Neural-network hybrid control for antilock braking systems,” IEEE Transactions on Neural Network, Vol. 14, No. 2, 2003, pp. 351-359.

[20] K.Watanabe, J. Tang, S.M. Koga and T. Fukuda, “A fuzzy-gaussian neural network and its application to mobile robot control,” IEEE Transactions on Control System
Technology, Vol. 4, 1996, pp. 193-199.

[21] H. Han and Junfei Qiao, “A self-organizing fuzzy neural network based on a growing and pruning algorithm,” IEEE Transacton on Fuzzy Systems, Vol. 19, Issue 6,
December 2010, pp. 1129-1143.
[22] J. Lin and R. J. Lian, “Hybrid self-organizing fuzzy and radial basis-function neuralnetwork controller for constant cutting force in turning,” The International Journal of Advanced Manufacturing Technology, Vol. 53, Numbers 9-12, April 2011, pp. 921-933.

[23] 張志袁(2012)。主動式懸吊系統之自組織模糊滑動徑向基類神經網路控制器的設計。國立臺北科技大學機電研究所學位論文。

[24] 鄧聚龍, 灰色控制系統, 華中理工大學出版社, 中國武漢, 1984。

[25] Y. Fei, J. Ning and X. K. Wang, “Based on Grey Prediction and fuzzy PID control Method,” Advanced Materials Research, Vol. 415-417, December 2011, pp. 920-
923.

[26] D. Q. Truong and K. K. Ahn, “Force control for hydraulic load simulator using selftuning grey predictor,” Mechatronics, Vol. 19, Issue 2, March 2009, pp.233-246.

[27] Z.Wang, R. Yang, L.Wang, Robert C, Green II, “A fuzzy adaptive comfort temperature model with grey predictor for multi-agent control system of smart building,” IEEE
Congress on Evolutionary Computation, June 2011, pp.728-735.

[28] Watton,J. 1989, “Fluid power system,”Prentice Hall.

[29] D. Driankow, H. Hellendoorn, M. Reinfrank, “An introduction to fuzzy control,”Springer-Verlag Berlin Heidelberg, 1993.

[30] E. H. Mandani, N. Baaklini, “Descriptive method for deriving control policy in a fuzzy logic controller,” Elec. Letters 11 25/6, 1975, pp. 625-626.

[31] E.H. Mandani, “Application of fuzzy algorithms for control of simple dynamic plants,” Proc. IEEE, Vol. 121, No. 12, 1974, pp. 1585-1588.

[32] L. Ljung, “System identification: theory for the user,” Information and System Sciences Series. Prentice-Hall, New York, 1987.

[33] J. J. E. Slotine, W. Li, “Applied nonlinear control,” New York, London: Prentice-Hall Inc, 1991.

[34] G. C. Hwang, S. C. Lin, “A stability approach to fuzzy control design for nonlinear systems,” Fuzzy Sets and Systems, 48(3), 1992,pp. 279-287.

[35] C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1994.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊