跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 06:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃彥傑
研究生(外文):Yan-Jie Huang
論文名稱:鐵鉑-二氧化鋯奈米複合材料合成及特性分析
論文名稱(外文):Synthesis and characterization of FePt/ZrO2 nanocomposite
指導教授:魏大華
口試委員:陳洋元余岳仲姚永德
口試日期:2013-07-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:103
中文關鍵詞:鐵鉑化學還原法正方晶相二氧化鋯磁性核殼式奈米粒子磁性固體酸式催化劑
外文關鍵詞:FePtchemical reduction methodt-ZrO2magnetic core-shell nanoparticlesmagnetic solid acid catalyst
相關次數:
  • 被引用被引用:7
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
奈米材料與技術在綠色化學領域上有廣泛應用的前景,所以本篇論文,希望製備出一種具有磁學性質和催化性質的核殼型磁性奈米粒子。本研究先是利用化學還原法製備出具有羧基(-COOH)、羥基(-OH)的FePt 奈米粒子;再利用溶膠凝膠法在低溫下製備出正方晶相的ZrO2 奈米粒子;最後結合化學還原法和溶膠凝膠法利用FePt表面的官能基與非晶相Zr(OH)4形成氫鍵,經熱退火處理後,製備出FePt/ZrO2之核殼型式奈米粒子,最後使用硫酸對粒子表面做修飾。最後將這些樣品分別以X光繞射儀、穿透式電子顯微鏡、傅立葉轉換紅外線光譜儀、振動試樣磁力計、高週波加熱器等儀器鑑定並分析其性質,實驗結果顯示:以三乙二醇所製備出來的FePt奈米粒子因表面有-OH、-COO-M和-CO-M的官能基訊號,可使FePt奈米粒子可溶於有機溶劑和水溶液中,且具有較大的飽和磁化量,為26.12 emu/g;在低溫下,初製備的非晶相Zr(OH)4,隨熱退火溫度增加至800 ℃出現正方晶相,經硫酸改質後成功的製備出ZrO2/SO42-;最後發現添加不同C12H28O4Zr前驅物比例時,可發現其飽和磁化量隨之增加而遞減,該奈米粒子具有磁學性質,且表面擁有SO42-官能基,希望此核殼奈式米粒子在未來可應用於磁性固體酸式催化劑。

The recent development of nanostructured materials and nanotechnologies led them to have potential applications in green chemical engineering. In this study, we aim at synthesizing magnetic and catalytic nanoparticles with core-shell structure. FePt/ZrO2 core-shell structured nanoparticles were successfully prepared by chemical reduction and sol gel method using FePt nanoparticles with carboxyl (-COOH), hydroxyl (-OH) functional groups and Zr(OH)4 as precursors, followed by an annealing procedure to obtain tetragonal phase zirconia (t-ZrO2). Sulfuric acid was employed for the surface modification of as-prepared nanoparticles. X-ray diffraction (XRD), Raman spectroscopy, high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), vibration sample magnetometer (VSM), and high frequency heater were utilized to investigate the properties of the FePt/ZrO2 nanoparticles. FTIR analysis demonstrated that the FePt nanoparticles synthesizing from tetraethylene glycol, possessed high amphiphilic property due to –OH, -COO-M, and –CO-M functional groups, and high saturation magnetization of 26.12 emu/g. XRD and Raman spectroscopy revealed that t-ZrO2 could be obtained from Zr(OH)4 by annealing at 800 oC. Also, the surface modification using sulfuric acid was found to contribute in formation of ZrO2/SO42-. The results show that high concentration of C12H28O4Zr as zirconium precursor, could significantly reduce the saturation magnetization of as-prepared nanoparticles. All the results open up an avenue for the applications of FePt/ZrO2 in magnetic solid acid catalyst.

目 錄
摘 要 ....................................................................................................................... i
Abstract .....................................................................................................................ii
誌 謝 .................................................................................................................... iii
目 錄 ...............................................................................................................iv
表目錄 ...................................................vii
圖目錄 ...................................................viii
第一章 緒論 .......................................................................................................... 1
1.1 前言........................................................................................................................... 1
1.2 研究動機 ................................................................................................................... 2
1.3 研究目的與範圍 ....................................................................................................... 3
第二章 文獻回顧與理論 ...................................................................................... 4
2.1 奈米材料 ............................................................................................................. 4
2.2 奈米粒子的基本特性 ......................................................................................... 4
2.2.1表面效應 ............................................................................................................. 4
2.2.2 量子尺寸效應 .................................................................................................... 5
2.2.3 小尺寸效應 ........................................................................................................ 6
2.2.4 量子穿隧效應 .................................................................................................... 7
2.2.5. 庫倫堵塞效應 ................................................................................................... 9
2.2.6. 奈米粒子的製備 ............................................................................................... 9
2.3 FePt磁性奈米粒子的特性 .................................................................................. 11
2.4 FePt奈米粒子的製備 .......................................................................................... 13
2.5 FePt奈米粒子在生物醫學上的應用 ................................................................... 15
2.6 ZrO2奈米粒子的特性 .......................................................................................... 17
2.7 ZrO2奈米粒子的製備 .......................................................................................... 20
2.8 ZrO2奈米粒子在化學工業上的應用 .................................................................. 25
v
2.9 FePt核殼型奈米複合材料在生醫上及其他應用 ............................................... 26
第三章 實驗方法及步驟 .................................................................................... 29
3.1 製備親水親油相FePt奈米粒子 ............................................................................ 30
3.1.1 實驗藥品 .......................................................................................................... 31
3.1.2 實驗設置 .......................................................................................................... 31
3.1.3 實驗步驟 .......................................................................................................... 32
3.2 製備Tetragonal ZrO2奈米粒子 ............................................................................. 34
3.2.1 實驗藥品 .......................................................................................................... 34
3.2.2 實驗設置 .......................................................................................................... 35
3.2.3 實驗步驟 .......................................................................................................... 36
3.2.4 熱退火處理 ...................................................................................................... 37
3.2.5 表面改質處理 .................................................................................................. 37
3.3 製備FePt@ZrO2核殼奈米粒子 ............................................................................ 38
3.3.1 實驗藥品 .......................................................................................................... 39
3.3.2 實驗步驟 .......................................................................................................... 40
3.4 儀器介紹 ................................................................................................................. 41
3.4.1 X-ray繞射晶體結構分析儀 .......................................................................... 41
3.4.2 穿透式電子顯微鏡 .......................................................................................... 42
3.4.3 傅立葉轉換紅外線光譜儀 .............................................................................. 43
3.4.4 振動試樣磁力計 .............................................................................................. 44
3.4.5 拉曼光譜儀 ...................................................................................................... 45
3.4.6 高週波加熱器 .................................................................................................. 46
第四章 實驗結果與討論 ...................................................................................... 49
4.1 FePt奈米粒子的實驗結果與討論 ................................................................... 49
4.1.1 FePt奈米粒子的晶體結構分析 ....................................................................... 50
4.1.2 FePt奈米粒子的粒徑、形貌和成份分析 ....................................................... 53
4.1.3 FePt奈米粒子的表面性質分析 ....................................................................... 56
vi
4.1.4 FePt奈米粒子的磁學分析 ............................................................................... 58
4.1.5 FePt奈米粒子的磁流體熱療檢測 ................................................................... 59
4.2 FePt奈米粒子在不同條件下的熱退火效應 ................................................... 62
4.2.1 FePt奈米粒子在大氣條件下熱退火 ............................................................... 62
4.2.2 FePt奈米粒子在真空條件下熱退火 ............................................................... 66
4.3 ZrO2奈米粒子的實驗結果與討論 ................................................................... 71
4.3.1 ZrO2奈米粒子的晶體結構分析 ....................................................................... 71
4.3.2 ZrO2奈米粒子的粒徑、形貌及成份分析 ....................................................... 74
4.3.3ZrO2奈米粒子的表面性質分析 ........................................................................ 76
4.4 FePt@ZrO2奈米粒子的實驗結果與討論 ........................................................ 78
4.4.1 FePt@ZrO2奈米粒子的晶體結構分析 ............................................................ 78
4.4.2 FePt@ZrO2奈米粒子的粒徑、形貌分析 ........................................................ 80
4.4.3 FePt@ZrO2奈米粒子的磁性質分析 ................................................................ 83
4.4.4 FePt@ZrO2奈米粒子的磁流體熱療檢測 ........................................................ 86
第五章 結論 ........................................................................................................ 90
第六章 未來展望 ................................................................................................ 92
參考文獻 ................................................................................................................ 93

參考文獻
[1] 蔡定平,「奈米檢測技術」,國家實驗研究院儀器科技研究中心 (2009)。
[2] 蔡信行、孫光中,「奈米科技導論-基本原理及應用」,新文京開發 (2004)。
[3] 郭清癸、黃俊傑、牟中原,「金屬奈米粒子的製造」,物理雙月刊,二十三卷六期,2001 年12 月,第614頁。
[4] 王世敏,許祖勛、傅晶,「奈米材料原理與製備」,五南圖書 (2004)。
[5] N. Poudyal, G. S. Chabey, C. B. Rong, J. P. Liu, “Shape control of FePt nanocrystals”, J. Appl. Phys., 105 (2009) 07A749 - 07A749-3.
[6] L. Colak, G. C. Hadjipanayis, “Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition”, Nanotechnology, 20 (2009) 485-602.
[7] M. S. Wellons, W. H. Morris, III, Z. Gai, J. Shen, J. Bentley, J. E. Wittig and C. M. Lukehart, “Direct Synthesis and Size Selection of Ferromagnetic FePt Nanoparticles”, Chem. Mater.,19 (2007) 2483.
[8] S. Sun, “Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles”, Adv. Mater., 18 (2006) 393-403.
[9] C. H. Yu, N. Caiulo, C. C. H. Lo, K. Tam, S. C. Tsang, “Synthesis and Fabrication of a Thin Film Containing Silica-Encapsulated Face-Centered Tetragonal FePt Nanoparticles”, Adv. Mater., 18 (2006) 2312–2314.
[10] T. Burkert, O. Eriksson, S. I. Simak, A. V. Ruban, B. Sanyal, L. Nordstrom, J. M. Wills, “Magnetic anisotropy of L10 FePt and Fe1−xMnxPt”, Phys. Rev. B, 71 (2005) 134 411.
[11] G. Brown, B. Kraczek, A. Janotti, T. C. Schulthess, G. M. Stocks, D. D. Johnson,
94
“Competition between ferromagnetism and antiferromagnetism in FePt”, Phys. Rev. B., 68 (2003) 405.
[12] O. Kitakami, S. Okamoto, N. Kikuchi, Y. Shimada, “Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films”, Phys. Rev. B., 66 (2002) 024413.
[13] J. B. Staunton, S. Ostanin, S. S. A. Razee, B. L. Gyorffy, L. Szunyogh,B. Ginatempo, E. Bruno, “Temperature Dependent Magnetic Anisotropy in Metallic Magnets from an Initio Electronic Structure Theory: L10-Ordered FePt”, Phys. Rev. Lett., 93 (2004) 204-257.
[14] S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices”, Science, 287 (2000) 1989.
[15] S. Sun, Eric E, D. Weller, C. B Murray, “Compositionally Controlled FePt Nanoparticle Materials”, IEEE Trans. Magn., 37 (2001) 1239.
[16] S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray and Bruce D. Terris, “Controlled Synthesis and Assembly of FePt Nanoparticles”, J. Phys. Chem. B, 107 (2003) 5419-5425.
[17] K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, Z. L. Wang, “Ultrafine FePt Nanoparticles Prepared by the Chemical Reduction Method”, Nano Letters, 3 (2003) 1647.
[18] 莊尚餘、陳學禮、鄭旭君、王鉦元、朱鐵吉、林俊宏,「金奈米粒子之特殊光學特性與研究之應用」,奈米通訊,十二卷三期,第8頁。
[19] 楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,二十八卷四期,2006 年8 月,第692頁。
[20] N. Shukla, C. Liu, P. M. Jones, D. Weller, “FTIR study of surfactant bonding to FePt nanoparticles”, J. Magn. Magn. Mater., 266 (2003) 178.
95
[21] H. G. Bagaria, E. T. Ada, M. Shamsuzzoha, D. E. N. Duane, T. Johnson, “Understanding Mercapto Ligand Exchange on the Surface of FePt Nanoparticles” ,Langmuir, 22 (2006) 7732.
[22] P. Gibot, E. Tronc, C. Chaneac, J. P. Jolivet, D. Fiorani, A.M. Testa, ”(Co, Fe)Pt nanoparticles by aqueous route; self-assembling, thermal and magnetic properties”, J. Magn. Magn. Mater., 290-291(2005) 555-558.
[23] Rui Hong, Nicholas O. Fischer, Todd Emrick, Vincent M. Rotello, “Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications”, Chem. Mater., 17 (2005) 4617.
[24] H. Yang, J. Zhang, Q.Tian, H. Hu, Y. Fang, H. Wu, S. Yang, ”One-pot synthesis of amphiphilic superparamagnetic FePt nanoparticles and magnetic resonance imaging in vitro”, J. Magn. Magn. Mater.,322 (2010) 973-977.
[25] R. C. Garvie, ”Zirconium Dioxide and Some of Its Binary System., in High Temperature Oxides”, A. M. Alper, Academic Press, New York, 5 (1970) 4.
[26] R. C. Garvie, ”The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect”, J. Phys. Chem., 69 (1965) 1238.
[27] R. C Garvie., ”Stabilization of the Tetragonal Structure in Zirconia Microcrystals”, J. Phys. Chem., 82 (1978) 218.
[28] J. Livage, K. Doi, and C. Mazieres, ”Nature and Thermal Evolution of Amorphous Hydrated Zirconium Oxide”, J. Am. Ceram. Soc., 51 (1968) 349.
[29] E. Tani, M. Yoshimura, S. Somiya, ”Formation of Ultrafine Tetragonal ZrO2 Powder Under Hydrated Zirconium Oxide”, J. Am. Ceram. Soc., 66 (1983) 11.
[30] M. I. Osendi, J. S. Moya, C. J. Serna, J. soria, ”Metastability of Tetragonal Zirconia Powders”, J. Am. Ceram. Soc., 68 (1985) 135,.
[31] Ryshkewitch E., ”Zirconia in Oxide Ceramics”, 1st ed., Academic. Press.,New York, 1960, Chap.II.5.
96
[32] D.I. Torres, J. Llopis, ”Infrared photoluminescence and Raman spectra in theY2O3-ZrO2 system”, Superlattices Microstruct., 45 (2009) 482-488.
[33] W. Li, L. Gao, “Nano ZrO2 (Y2O3) particles processing by heating of ethanol-aqueous salt solutions“, Ceram. Int., 27 (2001) 543-546.
[34] W. Li, L. Gao, J. K. Guo, “Synthesis of yttria-stabilized zirconia nanoparticles by heating of alcohol-aqueous salt solution“, Nanostruct. Mater. 10 (1998) 1043-1049.
[35] L. B. Chen, “Yttria-stabilized zirconia thermal barrier coatings — A review“, Surf. Rev. Lett., 13 (2006) 535-544.
[36] L. Gao, H. C. Qiao, H. B. Qiu, D. S. Yan, “Preparation of Ultrafine Zirconia Powder byEmulsion Method“, J. Eur. Ceram. Soc. 16 (1996) 437-440.
[37] S. SHUKLA, S. SEAL AND R. VANFLEET, “Sol-Gel Synthesis and Phase Evolution Behavior of Sterically Stabilized Nanocrystalline Zirconia“, J. Sol-Gel Sci. Technol., 27 (2003) 119–136.
[38] J. Joo, T. Yu, Y. W. Kim, H. M. Park, F. Wu, J. Z. Zhang, T. Hyeon, “Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals“, JACS, 125 (2003) 1553-1557.
[39] N. Prastomo, H. Muto, M. Sakai, A. Matsuda, “Formation and stabilization of tetragonal phase in sol–gel derived ZrO2 treated with base-hot-water“ Mater. Sci. Eng., B, 173 (2010) 99–104.
[40] Y. Chena, S. K. Lunsfordc, Y. Songa, H. Jub, P. Falarasd, V. likodimosd, A. G. Kontosd, D. D. Dionysioue, “Synthesis, characterization and electrochemical properties of mesoporous zirconia nanomaterials prepared by self-assembling sol–gel method with Tween 20 as a template“, Biochem. Eng. J., 170 (2011) 518–524.
[41] L. Rao, “Solid acid catalysts in green chemistry“, Resonance General article.,
97
2007.
[42] K. Wilson, J. H. Clark, “Solid acids and their use as environmentally friendly catalysts in organic synthesis“, Pure Appl. Chem., 72 (2000) 1313-1319.
[43] H. Ogawa, T. Chihara, K. Taya, “Selective monomethyl esterification of dicarboxylic acids by use of monocarboxylate chemisorption on alumina“, J. Am. Chem. Soc., 107 (1985) 1365-1369.
[44] T. J. Kwok, K. Jayasuriya, “Application of H-ZSM-5 Zeolite for regioselective mononitration of toluene“, J. Org. Chem. 59 (1994) 4939-4942.
[45] S. P. Chavan, R. Anand, K. Pasupathy, B. S. Rao, “Catalytic acetylation of alcohols, phenols, thiols and amines with zeolite H-FER under solventless conditions“, Green Chem., 3 (2001) 320-322.
[46] W. M. V. Rhijn, D. E. D. Vos, B. F. Sels, W. D. Bossaert, P. A. Jacobs, “Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions“, Chem. Commun., 3 (1998) 317-318.
[47] J. H. Clark, J. C. Ross, D. J. Macquarrie, S. J. Barlow, T. W. Bastock, “Environmentally friendly catalysis using supported reagents: the fast and selective bromination of aromatic substrates using supported zinc bromide“, Chem. Commun., 13 (1997) 1203-1204. [48] M. Hino, K. Arata, “Synthesis of Solid Superacid of Molybdenum Oxide Supported on Zirconia and Its Catalytic Action“, Chem. Lett., 18 (1989) 971-972.
[49] M. A. Alibeik, M. Hajihakimi, “Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles“, Chem. Pap. - Chem. Zvesti, 67 (2013) 490-496.
[50] J. Gao, B. Zhang, Y. Gao, Y. Pan, X. Zhang, B. Xu, “Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction: A Simple Preparation for Multifunctional Nanostructures”, J. Am. Chem. Soc., 129
98
(2007), 11928.
[51] K. Mori, K. Sugihara, Y. Kondo, T. Takeuchi, S. Morimoto, H. Yamashita, “Synthesis and Characterization of Core-Shell FePt@Ti-Containing Silica Spherical Nanocomposite as a Catalyst Carrier for Liquid-Phase Reactions”, J. Phys. Chem. C, 112 (2008) 16478.
[52] J. Kim, C. Rong, Y. Lee, J. P. Liu, S. Sun, “From Core/Shell Structured FePt/Fe3O4/MgO to Ferromagnetic FePt Nanoparticles”, Chem. Mater., 20 (2008) 7242.
[53] J. Kim, C. Rong, J. P. Liu, S. Sun, “Dispersible Ferromagnetic FePt Nanoparticles”, Adv. Mater., 20 (2009) 906.
[54] V. Mazumder, M. Chi, K. L. More, S. Sun, “Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for theOxygen Reduction Reaction”, J. Am. Chem. Soc., 132 (2010) 7848.
[55] H. Zeng, J. Li, Z. L. Wang, J. P. Liu, S. Sun, “Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles“, Nano Lett., 4 (2004) 187-190.
[56] J. Gao, G. Liang, B. Zhang, Y. Kuang, X. Zhang, B. Xu, “FePt@CoS2 Yolk-Shell Nanocrystals as a Potent Agent to Kill HeLa Cells”, J. Am. Chem. Soc., 129 (2007) 1428-1433.
[57] H. Tang, C. H. Yu, W. Oduoro, H. He, S. C. Tsang, “Engineering of a Monodisperse Core-Shell Magnetic Ti-O-Si Oxidation Nanocatalyst”, Langmuir, 24 (2008) 1587-1590.
[58] V. Mazumder, M. Chi, K. L. More, S. Sun, “Synthesis and Characterization of Multimetallic Pd/Au and Pd/Au/FePt Core/Shell Nanoparticles“, Angew. Chem. Int. Ed., 49 (2010) 9368 –9372.
[59] D. C. Lee, F. V. Mikulec, J. M. Pelaez, B. Koo, B. A. Korgel, “Synthesis and Magnetic Properties of Silica-Coated FePt Nanocrystals”, J. Phys. Chem. B., 110
99
(2006) 11160–11166.
[60] A. G. Tkachenko, H. Xie, Y. Liu, D. Coleman, J. Ryan, W. R. Glomm, M. K. Shipton, S. Franzen, D. L. Feldheim, “Cellular trajectories of Peptide-Modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains“, Bioconjugate Chem., 15 (2004) 482-490.
[61] A. H. Latham, M. E. Williams, “Controlling transport and chemical functionality of magnetic nanoparticles“, Acc. Chem. Res., 41 (2008) 411-420.
[62] B. Darling, N. A. Yufa, Amadou L. Cisse, Samuel D. Bader, Steven J. Sibener, “Self-Organization of FePt Nanoparticles on Photochemically Modified Diblock Copolymer Templates“, Adv. Mater., 17 (2005) 2446–2450.
[63] S. S. KalyanKamal, P. K. Sahoo, L. Durai, P. Ghosal, M. M. Raja, S. Ram, “Synthesis and surface modified hard magnetic properties in Co0.5Pt0.5 nanocrystallites from a rheological liquid precursor“, J. Magn. Magn. Mater., 324 (2012) 3893–3898.
[64] H. G. Bagaria, E. T. Ada, M. Shamsuzzoha, D. E. Nikles, D. T. Johnson, “Understanding Mercapto Ligand Exchange on the Surface of FePt Nanoparticles“, Langmuir, 22 (2006)7732-7737. [65] C. Xu, S. Sun, “Monodisperse magnetic nanoparticles for biomedical applications“, Polym. Int., 56 (2007) 821-826.
[66] Y. W. Zhang, J. T. Jia, C. S. Liao, C. H. Yan, “Synthesis of scandia-stabilized zirconia via thermo-decomposition of precursor complexes“, J. Mater. Chem., 10 (2000) 2137-2141.
[67] S. D. Kim1, K. S. Hwang, “Crystallinity, Microstructure and Mechanical Strength of Yttria-Stabilized Tetragonal Zirconia Ceramics for Optical Ferrule“, Mater. Sci. Appl., 2 (2011) 1-5.
[68] Y. S. Hsu, Y. L. Wang, A. N. Ko, “Effect of Sulfation of Zirconia on Catalytic
100
Performance in the Dehydration of Aliphatic Alcohols“, J. Chin. Chem. Soc., 56 (2009) 314-322.
[69] K. Mori, K. Sugihara, Y. Kondo, T. Takeuchi, S. Morimoto, H. Yamashita, “Synthesis and Characterization of Core-Shell FePt@Ti-Containing Silica Spherical Nanocomposite as a Catalyst Carrier for Liquid-Phase Reactions”, J. Phys. Chem. C, 112 (2008) 16478–16483.
[70] D. Qin, E. Yan, J. Yu, W. Zhang, B. Liu, X. Yang, “Synthesis of polymer/zirconium hydroxide coreeshell microspheres and the hollow porous zirconium oxide microspheres“, Mater. Chem. Phys., 136 (2012) 688-697.
[71] 汪建民,「材料分析」,中國材料科學學會,1998。
[72] 楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,二十八卷四期,2006 年8 月,第692頁。
[73] V. S Kalambur, B. Han1, B. E. Hammer, T. W. Shield, J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications”, Nanotechnology, 16 (2005) 1221.
[74] P. D. L. Presa, Y. Luengo, M.. Multigner, R. Costo, M. P. Morales, G. Rivero, A. Hernando, “Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ-Fe2O3 Nanoparticles“, J. Phys. Chem. C, 116 (2012) 25602−25610.
[75] Y. Jing, S. H. He, J. P. Wang, “Fe3Si nanoparticles for alternating magnetic field heating“, J. Nanopart. Res., 15 (2013) 1517.
[76] E. K. S. Hashimoto, T. Kayano, M. Minagawa, H. Yanagihara, M. Kishimoto, K. Yamada, T. Oda, N. Ohkohchi, T. Takagi, T. Kanamori, Y. Ikehata, I. Nagano, “Heating characteristics of ferromagnetic iron oxide nanoparticles for magnetic hyperthermia“, J. Appl. Phys., 107 (2010) 321.
[77] S. Maenoson, S. Saita, “Theoretical Assessment of FePt Nanoparticles as
101
Heating Elements for Magnetic Hyperthermia“, IEEE Trans. Magn., 42 (2006) 1638-1642.
[78] R.E. Rosensweig, “Heating magnetic fluid with alternating magnetic field“, J. Magn. Magn. Mater., 252 (2002) 370–374.
[79] V. S. Kalambur, B. Han, B. E Hammer, T. W. Shield, J. C. Bischof, “In vitro characterization of movement,heating and visualization of magnetic nanoparticles for biomedical applications“, Nanotechnology, 16 (2005) 1221–1233.
[80] J. P. Fortin, C. Wilhelm, J. Servais, C. Me’nager, J. C. Bacri, F. Gazeau, “Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia“, J. AM. CHEM. SOC., 129 (2007) 2628-2635.
[81] X. Wang, H. Gu, Z. Yang, “The heating effect of magnetic fluids in an alternating magnetic field“, J. Magn. Magn. Mater., 293 (2005) 334–340.
[82] M. Delalande, P. R. Marcoux, P. Reiss, Y. Samson, “Core–shell structure of chemically synthesised FePt nanoparticles: a comparative study“, J. Mater. Chem., 17 (2007) 1579-1588.
[83] J. Baltrusaitis, D. M. Cwiertnya, V. H. Grassian, “Adsorption of sulfur dioxide on hematite and goethite particle surfaces“, Phys. Chem. Chem. Phys., 9 (2007) 5542–5554.
[84] G. Li, C. W. Leung, Y. C. Chen, K. W. Lin, A. C. Sun, J. H. Hsu, P. W.T. Pong, “Effect of annealing temperature on microstructure and magnetism of FePt/TaOx bilayer“, Microelectron. Eng., 110 (2013) 241-245.
[85] C. Liua, T. J. Klemmera, N. Shuklaa, X. Wua, D. Wellera, M. Tanaseb, D. Laughlinb, “Oxidation of FePt nanoparticles“, J. Magn. Magn. Mater., 266 (2003) 96–101.
[86] J. Baltrusaitis, D. M. Cwiertny, V. H. Grassian, “Adsorption of sulfur dioxide on
102
hematite and goethite particle surfaces“, Phys. Chem. Chem. Phys., 9 (2007) 5542–5554.
[87] G. S. Alvarez, J. Sort, A. Uheida, M. Muhammed, S. Surin, M. D. Baro, J. Nogue, “Reversible post-synthesis tuning of the superparamagnetic blocking temperature of c-Fe2O3 nanoparticles by adsorption and desorption of Co(II) ions“, J. Mater. Chem., 2007, 17, 322–328.
[88] X. N. Xu, Y. Wolfus, A. Shaulov, Y. Yeshurun, I. Felner, “Annealing study of Fe2O3 nanoparticles: Magnetic size effects and phase transformations“, J. Appl. Phys., 91 (2002) 4610-4616.
[89] Y. E. Mendili, J. F. Bardeau, N. Randrianantoandro, F. Grasset, J. M. Greneche, “Insights into the Mechanism Related to the Phase Transition from γ‑Fe2O3 to α‑Fe2O3 Nanoparticles Induced by Thermal Treatment and Laser Irradiation“, J. Phys. Chem. C, 116 (2012) 23785−23792.
[90] L. Wang, J. Luo, Q. Fan, M. Suzuki, I. S. Suzuki, M. H. Engelhard, Y. Lin, N. Kim, J. Q. Wang, C. J. Zhong, “Monodispersed Core-Shell Fe3O4@Au Nanoparticles“, J. Phys. Chem. B, 109 (2005) 21593-21601.
[91] X. W. Wu, C. Liu, L. Li, P. Jones, R. W. Chantrell, “Nonmagnetic shell in surfactant-coated FePt nanoparticles“, J. Appl. Phys., 95 (2004) 6809-6812.
[92] S. Rashdan, M. Bououdina, A. A. Saie, “Effect of the preparation route, PEG and annealing on the phase stability of Fe3O4 nanoparticles and their magnetic properties“, J. Exp. Nano., 8 (2013) 210-222.
[93] M. Mohapatra, S. Layek, S. Anand, H. C. Verma, K. Mishra, “Structural and magnetic properties of Mg-doped nano-a-Fe2O3 particles synthesized by surfactant mediation–precipitation technique“, Phys. Status Solidi B, 250 (2013) 65–72.
[94] S. C. N. Tang, I. M. C. Lo, “Magnetic nanoparticles: Essential factors for
103
sustainable environmental applications“, water research, 47 (2013) 2613-2632.
[95] X. Wanga, H. Gub, Z. Yang, “The heating effect of magnetic fluids in an alternating magnetic field“, J. Magn. Magn. Mater., 293 (2005) 334–340.
[96] T. Hosono, H. Takahashi, A. Fujita, R. J. Joseyphus, K. Tohji, B. Jeyadevan, “Synthesis of magnetite nanoparticles for AC magnetic heating“, J. Magn. Magn. Mater., 321 (2009) 3019–3023.
[97] S. W. Lee, C. S. Kim, “Mossbauer studies on the superparamagnetic behavior of CoFe2O4 with a few nanometers“, J. Magn. Magn. Mater., 303 (2006) e315-e317.
[98] R. Hiergeist, W. Andrak, N. Buske, R. Hergt, I. Hilger, U. Richter,W. Kaiser, “Application of magnetite ferrouids for hyperthermia“, J. Magn. Magn. Mater., 201 (1999) 420-422.
[99] M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, N. Gu, “Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field“, J. Magn. Magn. Mater., 268 (2004) 33-39.
[100] T. Kikuchi, R. Kasuya, S. Endo, A. Nakamura, T. Takai, N. M. Nolte, K. Tohji, J. Balachandran, “Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia“, J. Magn. Magn. Mater., 323 (2011) 1216–1222.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top