參考文獻
[1] 蔡定平,「奈米檢測技術」,國家實驗研究院儀器科技研究中心 (2009)。
[2] 蔡信行、孫光中,「奈米科技導論-基本原理及應用」,新文京開發 (2004)。
[3] 郭清癸、黃俊傑、牟中原,「金屬奈米粒子的製造」,物理雙月刊,二十三卷六期,2001 年12 月,第614頁。[4] 王世敏,許祖勛、傅晶,「奈米材料原理與製備」,五南圖書 (2004)。
[5] N. Poudyal, G. S. Chabey, C. B. Rong, J. P. Liu, “Shape control of FePt nanocrystals”, J. Appl. Phys., 105 (2009) 07A749 - 07A749-3.
[6] L. Colak, G. C. Hadjipanayis, “Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition”, Nanotechnology, 20 (2009) 485-602.
[7] M. S. Wellons, W. H. Morris, III, Z. Gai, J. Shen, J. Bentley, J. E. Wittig and C. M. Lukehart, “Direct Synthesis and Size Selection of Ferromagnetic FePt Nanoparticles”, Chem. Mater.,19 (2007) 2483.
[8] S. Sun, “Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles”, Adv. Mater., 18 (2006) 393-403.
[9] C. H. Yu, N. Caiulo, C. C. H. Lo, K. Tam, S. C. Tsang, “Synthesis and Fabrication of a Thin Film Containing Silica-Encapsulated Face-Centered Tetragonal FePt Nanoparticles”, Adv. Mater., 18 (2006) 2312–2314.
[10] T. Burkert, O. Eriksson, S. I. Simak, A. V. Ruban, B. Sanyal, L. Nordstrom, J. M. Wills, “Magnetic anisotropy of L10 FePt and Fe1−xMnxPt”, Phys. Rev. B, 71 (2005) 134 411.
[11] G. Brown, B. Kraczek, A. Janotti, T. C. Schulthess, G. M. Stocks, D. D. Johnson,
94
“Competition between ferromagnetism and antiferromagnetism in FePt”, Phys. Rev. B., 68 (2003) 405.
[12] O. Kitakami, S. Okamoto, N. Kikuchi, Y. Shimada, “Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films”, Phys. Rev. B., 66 (2002) 024413.
[13] J. B. Staunton, S. Ostanin, S. S. A. Razee, B. L. Gyorffy, L. Szunyogh,B. Ginatempo, E. Bruno, “Temperature Dependent Magnetic Anisotropy in Metallic Magnets from an Initio Electronic Structure Theory: L10-Ordered FePt”, Phys. Rev. Lett., 93 (2004) 204-257.
[14] S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices”, Science, 287 (2000) 1989.
[15] S. Sun, Eric E, D. Weller, C. B Murray, “Compositionally Controlled FePt Nanoparticle Materials”, IEEE Trans. Magn., 37 (2001) 1239.
[16] S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray and Bruce D. Terris, “Controlled Synthesis and Assembly of FePt Nanoparticles”, J. Phys. Chem. B, 107 (2003) 5419-5425.
[17] K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, Z. L. Wang, “Ultrafine FePt Nanoparticles Prepared by the Chemical Reduction Method”, Nano Letters, 3 (2003) 1647.
[18] 莊尚餘、陳學禮、鄭旭君、王鉦元、朱鐵吉、林俊宏,「金奈米粒子之特殊光學特性與研究之應用」,奈米通訊,十二卷三期,第8頁。
[19] 楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,二十八卷四期,2006 年8 月,第692頁。[20] N. Shukla, C. Liu, P. M. Jones, D. Weller, “FTIR study of surfactant bonding to FePt nanoparticles”, J. Magn. Magn. Mater., 266 (2003) 178.
95
[21] H. G. Bagaria, E. T. Ada, M. Shamsuzzoha, D. E. N. Duane, T. Johnson, “Understanding Mercapto Ligand Exchange on the Surface of FePt Nanoparticles” ,Langmuir, 22 (2006) 7732.
[22] P. Gibot, E. Tronc, C. Chaneac, J. P. Jolivet, D. Fiorani, A.M. Testa, ”(Co, Fe)Pt nanoparticles by aqueous route; self-assembling, thermal and magnetic properties”, J. Magn. Magn. Mater., 290-291(2005) 555-558.
[23] Rui Hong, Nicholas O. Fischer, Todd Emrick, Vincent M. Rotello, “Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications”, Chem. Mater., 17 (2005) 4617.
[24] H. Yang, J. Zhang, Q.Tian, H. Hu, Y. Fang, H. Wu, S. Yang, ”One-pot synthesis of amphiphilic superparamagnetic FePt nanoparticles and magnetic resonance imaging in vitro”, J. Magn. Magn. Mater.,322 (2010) 973-977.
[25] R. C. Garvie, ”Zirconium Dioxide and Some of Its Binary System., in High Temperature Oxides”, A. M. Alper, Academic Press, New York, 5 (1970) 4.
[26] R. C. Garvie, ”The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect”, J. Phys. Chem., 69 (1965) 1238.
[27] R. C Garvie., ”Stabilization of the Tetragonal Structure in Zirconia Microcrystals”, J. Phys. Chem., 82 (1978) 218.
[28] J. Livage, K. Doi, and C. Mazieres, ”Nature and Thermal Evolution of Amorphous Hydrated Zirconium Oxide”, J. Am. Ceram. Soc., 51 (1968) 349.
[29] E. Tani, M. Yoshimura, S. Somiya, ”Formation of Ultrafine Tetragonal ZrO2 Powder Under Hydrated Zirconium Oxide”, J. Am. Ceram. Soc., 66 (1983) 11.
[30] M. I. Osendi, J. S. Moya, C. J. Serna, J. soria, ”Metastability of Tetragonal Zirconia Powders”, J. Am. Ceram. Soc., 68 (1985) 135,.
[31] Ryshkewitch E., ”Zirconia in Oxide Ceramics”, 1st ed., Academic. Press.,New York, 1960, Chap.II.5.
96
[32] D.I. Torres, J. Llopis, ”Infrared photoluminescence and Raman spectra in theY2O3-ZrO2 system”, Superlattices Microstruct., 45 (2009) 482-488.
[33] W. Li, L. Gao, “Nano ZrO2 (Y2O3) particles processing by heating of ethanol-aqueous salt solutions“, Ceram. Int., 27 (2001) 543-546.
[34] W. Li, L. Gao, J. K. Guo, “Synthesis of yttria-stabilized zirconia nanoparticles by heating of alcohol-aqueous salt solution“, Nanostruct. Mater. 10 (1998) 1043-1049.
[35] L. B. Chen, “Yttria-stabilized zirconia thermal barrier coatings — A review“, Surf. Rev. Lett., 13 (2006) 535-544.
[36] L. Gao, H. C. Qiao, H. B. Qiu, D. S. Yan, “Preparation of Ultrafine Zirconia Powder byEmulsion Method“, J. Eur. Ceram. Soc. 16 (1996) 437-440.
[37] S. SHUKLA, S. SEAL AND R. VANFLEET, “Sol-Gel Synthesis and Phase Evolution Behavior of Sterically Stabilized Nanocrystalline Zirconia“, J. Sol-Gel Sci. Technol., 27 (2003) 119–136.
[38] J. Joo, T. Yu, Y. W. Kim, H. M. Park, F. Wu, J. Z. Zhang, T. Hyeon, “Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals“, JACS, 125 (2003) 1553-1557.
[39] N. Prastomo, H. Muto, M. Sakai, A. Matsuda, “Formation and stabilization of tetragonal phase in sol–gel derived ZrO2 treated with base-hot-water“ Mater. Sci. Eng., B, 173 (2010) 99–104.
[40] Y. Chena, S. K. Lunsfordc, Y. Songa, H. Jub, P. Falarasd, V. likodimosd, A. G. Kontosd, D. D. Dionysioue, “Synthesis, characterization and electrochemical properties of mesoporous zirconia nanomaterials prepared by self-assembling sol–gel method with Tween 20 as a template“, Biochem. Eng. J., 170 (2011) 518–524.
[41] L. Rao, “Solid acid catalysts in green chemistry“, Resonance General article.,
97
2007.
[42] K. Wilson, J. H. Clark, “Solid acids and their use as environmentally friendly catalysts in organic synthesis“, Pure Appl. Chem., 72 (2000) 1313-1319.
[43] H. Ogawa, T. Chihara, K. Taya, “Selective monomethyl esterification of dicarboxylic acids by use of monocarboxylate chemisorption on alumina“, J. Am. Chem. Soc., 107 (1985) 1365-1369.
[44] T. J. Kwok, K. Jayasuriya, “Application of H-ZSM-5 Zeolite for regioselective mononitration of toluene“, J. Org. Chem. 59 (1994) 4939-4942.
[45] S. P. Chavan, R. Anand, K. Pasupathy, B. S. Rao, “Catalytic acetylation of alcohols, phenols, thiols and amines with zeolite H-FER under solventless conditions“, Green Chem., 3 (2001) 320-322.
[46] W. M. V. Rhijn, D. E. D. Vos, B. F. Sels, W. D. Bossaert, P. A. Jacobs, “Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions“, Chem. Commun., 3 (1998) 317-318.
[47] J. H. Clark, J. C. Ross, D. J. Macquarrie, S. J. Barlow, T. W. Bastock, “Environmentally friendly catalysis using supported reagents: the fast and selective bromination of aromatic substrates using supported zinc bromide“, Chem. Commun., 13 (1997) 1203-1204. [48] M. Hino, K. Arata, “Synthesis of Solid Superacid of Molybdenum Oxide Supported on Zirconia and Its Catalytic Action“, Chem. Lett., 18 (1989) 971-972.
[49] M. A. Alibeik, M. Hajihakimi, “Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles“, Chem. Pap. - Chem. Zvesti, 67 (2013) 490-496.
[50] J. Gao, B. Zhang, Y. Gao, Y. Pan, X. Zhang, B. Xu, “Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction: A Simple Preparation for Multifunctional Nanostructures”, J. Am. Chem. Soc., 129
98
(2007), 11928.
[51] K. Mori, K. Sugihara, Y. Kondo, T. Takeuchi, S. Morimoto, H. Yamashita, “Synthesis and Characterization of Core-Shell FePt@Ti-Containing Silica Spherical Nanocomposite as a Catalyst Carrier for Liquid-Phase Reactions”, J. Phys. Chem. C, 112 (2008) 16478.
[52] J. Kim, C. Rong, Y. Lee, J. P. Liu, S. Sun, “From Core/Shell Structured FePt/Fe3O4/MgO to Ferromagnetic FePt Nanoparticles”, Chem. Mater., 20 (2008) 7242.
[53] J. Kim, C. Rong, J. P. Liu, S. Sun, “Dispersible Ferromagnetic FePt Nanoparticles”, Adv. Mater., 20 (2009) 906.
[54] V. Mazumder, M. Chi, K. L. More, S. Sun, “Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for theOxygen Reduction Reaction”, J. Am. Chem. Soc., 132 (2010) 7848.
[55] H. Zeng, J. Li, Z. L. Wang, J. P. Liu, S. Sun, “Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles“, Nano Lett., 4 (2004) 187-190.
[56] J. Gao, G. Liang, B. Zhang, Y. Kuang, X. Zhang, B. Xu, “FePt@CoS2 Yolk-Shell Nanocrystals as a Potent Agent to Kill HeLa Cells”, J. Am. Chem. Soc., 129 (2007) 1428-1433.
[57] H. Tang, C. H. Yu, W. Oduoro, H. He, S. C. Tsang, “Engineering of a Monodisperse Core-Shell Magnetic Ti-O-Si Oxidation Nanocatalyst”, Langmuir, 24 (2008) 1587-1590.
[58] V. Mazumder, M. Chi, K. L. More, S. Sun, “Synthesis and Characterization of Multimetallic Pd/Au and Pd/Au/FePt Core/Shell Nanoparticles“, Angew. Chem. Int. Ed., 49 (2010) 9368 –9372.
[59] D. C. Lee, F. V. Mikulec, J. M. Pelaez, B. Koo, B. A. Korgel, “Synthesis and Magnetic Properties of Silica-Coated FePt Nanocrystals”, J. Phys. Chem. B., 110
99
(2006) 11160–11166.
[60] A. G. Tkachenko, H. Xie, Y. Liu, D. Coleman, J. Ryan, W. R. Glomm, M. K. Shipton, S. Franzen, D. L. Feldheim, “Cellular trajectories of Peptide-Modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains“, Bioconjugate Chem., 15 (2004) 482-490.
[61] A. H. Latham, M. E. Williams, “Controlling transport and chemical functionality of magnetic nanoparticles“, Acc. Chem. Res., 41 (2008) 411-420.
[62] B. Darling, N. A. Yufa, Amadou L. Cisse, Samuel D. Bader, Steven J. Sibener, “Self-Organization of FePt Nanoparticles on Photochemically Modified Diblock Copolymer Templates“, Adv. Mater., 17 (2005) 2446–2450.
[63] S. S. KalyanKamal, P. K. Sahoo, L. Durai, P. Ghosal, M. M. Raja, S. Ram, “Synthesis and surface modified hard magnetic properties in Co0.5Pt0.5 nanocrystallites from a rheological liquid precursor“, J. Magn. Magn. Mater., 324 (2012) 3893–3898.
[64] H. G. Bagaria, E. T. Ada, M. Shamsuzzoha, D. E. Nikles, D. T. Johnson, “Understanding Mercapto Ligand Exchange on the Surface of FePt Nanoparticles“, Langmuir, 22 (2006)7732-7737. [65] C. Xu, S. Sun, “Monodisperse magnetic nanoparticles for biomedical applications“, Polym. Int., 56 (2007) 821-826.
[66] Y. W. Zhang, J. T. Jia, C. S. Liao, C. H. Yan, “Synthesis of scandia-stabilized zirconia via thermo-decomposition of precursor complexes“, J. Mater. Chem., 10 (2000) 2137-2141.
[67] S. D. Kim1, K. S. Hwang, “Crystallinity, Microstructure and Mechanical Strength of Yttria-Stabilized Tetragonal Zirconia Ceramics for Optical Ferrule“, Mater. Sci. Appl., 2 (2011) 1-5.
[68] Y. S. Hsu, Y. L. Wang, A. N. Ko, “Effect of Sulfation of Zirconia on Catalytic
100
Performance in the Dehydration of Aliphatic Alcohols“, J. Chin. Chem. Soc., 56 (2009) 314-322.
[69] K. Mori, K. Sugihara, Y. Kondo, T. Takeuchi, S. Morimoto, H. Yamashita, “Synthesis and Characterization of Core-Shell FePt@Ti-Containing Silica Spherical Nanocomposite as a Catalyst Carrier for Liquid-Phase Reactions”, J. Phys. Chem. C, 112 (2008) 16478–16483.
[70] D. Qin, E. Yan, J. Yu, W. Zhang, B. Liu, X. Yang, “Synthesis of polymer/zirconium hydroxide coreeshell microspheres and the hollow porous zirconium oxide microspheres“, Mater. Chem. Phys., 136 (2012) 688-697.
[71] 汪建民,「材料分析」,中國材料科學學會,1998。
[72] 楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,二十八卷四期,2006 年8 月,第692頁。[73] V. S Kalambur, B. Han1, B. E. Hammer, T. W. Shield, J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications”, Nanotechnology, 16 (2005) 1221.
[74] P. D. L. Presa, Y. Luengo, M.. Multigner, R. Costo, M. P. Morales, G. Rivero, A. Hernando, “Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ-Fe2O3 Nanoparticles“, J. Phys. Chem. C, 116 (2012) 25602−25610.
[75] Y. Jing, S. H. He, J. P. Wang, “Fe3Si nanoparticles for alternating magnetic field heating“, J. Nanopart. Res., 15 (2013) 1517.
[76] E. K. S. Hashimoto, T. Kayano, M. Minagawa, H. Yanagihara, M. Kishimoto, K. Yamada, T. Oda, N. Ohkohchi, T. Takagi, T. Kanamori, Y. Ikehata, I. Nagano, “Heating characteristics of ferromagnetic iron oxide nanoparticles for magnetic hyperthermia“, J. Appl. Phys., 107 (2010) 321.
[77] S. Maenoson, S. Saita, “Theoretical Assessment of FePt Nanoparticles as
101
Heating Elements for Magnetic Hyperthermia“, IEEE Trans. Magn., 42 (2006) 1638-1642.
[78] R.E. Rosensweig, “Heating magnetic fluid with alternating magnetic field“, J. Magn. Magn. Mater., 252 (2002) 370–374.
[79] V. S. Kalambur, B. Han, B. E Hammer, T. W. Shield, J. C. Bischof, “In vitro characterization of movement,heating and visualization of magnetic nanoparticles for biomedical applications“, Nanotechnology, 16 (2005) 1221–1233.
[80] J. P. Fortin, C. Wilhelm, J. Servais, C. Me’nager, J. C. Bacri, F. Gazeau, “Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia“, J. AM. CHEM. SOC., 129 (2007) 2628-2635.
[81] X. Wang, H. Gu, Z. Yang, “The heating effect of magnetic fluids in an alternating magnetic field“, J. Magn. Magn. Mater., 293 (2005) 334–340.
[82] M. Delalande, P. R. Marcoux, P. Reiss, Y. Samson, “Core–shell structure of chemically synthesised FePt nanoparticles: a comparative study“, J. Mater. Chem., 17 (2007) 1579-1588.
[83] J. Baltrusaitis, D. M. Cwiertnya, V. H. Grassian, “Adsorption of sulfur dioxide on hematite and goethite particle surfaces“, Phys. Chem. Chem. Phys., 9 (2007) 5542–5554.
[84] G. Li, C. W. Leung, Y. C. Chen, K. W. Lin, A. C. Sun, J. H. Hsu, P. W.T. Pong, “Effect of annealing temperature on microstructure and magnetism of FePt/TaOx bilayer“, Microelectron. Eng., 110 (2013) 241-245.
[85] C. Liua, T. J. Klemmera, N. Shuklaa, X. Wua, D. Wellera, M. Tanaseb, D. Laughlinb, “Oxidation of FePt nanoparticles“, J. Magn. Magn. Mater., 266 (2003) 96–101.
[86] J. Baltrusaitis, D. M. Cwiertny, V. H. Grassian, “Adsorption of sulfur dioxide on
102
hematite and goethite particle surfaces“, Phys. Chem. Chem. Phys., 9 (2007) 5542–5554.
[87] G. S. Alvarez, J. Sort, A. Uheida, M. Muhammed, S. Surin, M. D. Baro, J. Nogue, “Reversible post-synthesis tuning of the superparamagnetic blocking temperature of c-Fe2O3 nanoparticles by adsorption and desorption of Co(II) ions“, J. Mater. Chem., 2007, 17, 322–328.
[88] X. N. Xu, Y. Wolfus, A. Shaulov, Y. Yeshurun, I. Felner, “Annealing study of Fe2O3 nanoparticles: Magnetic size effects and phase transformations“, J. Appl. Phys., 91 (2002) 4610-4616.
[89] Y. E. Mendili, J. F. Bardeau, N. Randrianantoandro, F. Grasset, J. M. Greneche, “Insights into the Mechanism Related to the Phase Transition from γ‑Fe2O3 to α‑Fe2O3 Nanoparticles Induced by Thermal Treatment and Laser Irradiation“, J. Phys. Chem. C, 116 (2012) 23785−23792.
[90] L. Wang, J. Luo, Q. Fan, M. Suzuki, I. S. Suzuki, M. H. Engelhard, Y. Lin, N. Kim, J. Q. Wang, C. J. Zhong, “Monodispersed Core-Shell Fe3O4@Au Nanoparticles“, J. Phys. Chem. B, 109 (2005) 21593-21601.
[91] X. W. Wu, C. Liu, L. Li, P. Jones, R. W. Chantrell, “Nonmagnetic shell in surfactant-coated FePt nanoparticles“, J. Appl. Phys., 95 (2004) 6809-6812.
[92] S. Rashdan, M. Bououdina, A. A. Saie, “Effect of the preparation route, PEG and annealing on the phase stability of Fe3O4 nanoparticles and their magnetic properties“, J. Exp. Nano., 8 (2013) 210-222.
[93] M. Mohapatra, S. Layek, S. Anand, H. C. Verma, K. Mishra, “Structural and magnetic properties of Mg-doped nano-a-Fe2O3 particles synthesized by surfactant mediation–precipitation technique“, Phys. Status Solidi B, 250 (2013) 65–72.
[94] S. C. N. Tang, I. M. C. Lo, “Magnetic nanoparticles: Essential factors for
103
sustainable environmental applications“, water research, 47 (2013) 2613-2632.
[95] X. Wanga, H. Gub, Z. Yang, “The heating effect of magnetic fluids in an alternating magnetic field“, J. Magn. Magn. Mater., 293 (2005) 334–340.
[96] T. Hosono, H. Takahashi, A. Fujita, R. J. Joseyphus, K. Tohji, B. Jeyadevan, “Synthesis of magnetite nanoparticles for AC magnetic heating“, J. Magn. Magn. Mater., 321 (2009) 3019–3023.
[97] S. W. Lee, C. S. Kim, “Mossbauer studies on the superparamagnetic behavior of CoFe2O4 with a few nanometers“, J. Magn. Magn. Mater., 303 (2006) e315-e317.
[98] R. Hiergeist, W. Andrak, N. Buske, R. Hergt, I. Hilger, U. Richter,W. Kaiser, “Application of magnetite ferrouids for hyperthermia“, J. Magn. Magn. Mater., 201 (1999) 420-422.
[99] M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, N. Gu, “Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field“, J. Magn. Magn. Mater., 268 (2004) 33-39.
[100] T. Kikuchi, R. Kasuya, S. Endo, A. Nakamura, T. Takai, N. M. Nolte, K. Tohji, J. Balachandran, “Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia“, J. Magn. Magn. Mater., 323 (2011) 1216–1222.