(3.227.208.0) 您好!臺灣時間:2021/04/21 01:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:藍煒勛
研究生(外文):Wei-Shiun Lan
論文名稱:Ka頻段五埠E平面Y型分岔導波管功率分波器
論文名稱(外文):Five-Port E-Plane Y-Structure Bifurcated Waveguide Power Divider at Ka-Band
指導教授:李士修
指導教授(外文):Eric S. Li
口試委員:王紳孫卓勳賴柏洲
口試委員(外文):Sen WangJow-Shiun SunPo-Chou Lai
口試日期:2013-07-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:71
中文關鍵詞:固態放大器Ka頻段功率合成/分波器功率合成/分波技術E平面分岔導波管柴比雪夫阻抗轉換器導波管彎角電阻膜
外文關鍵詞:solid-state amplifierKa-band power combiner/dividerpower combining/dividing techniquesE-plane bifurcated waveguideChebyshev impedance transformerradial waveguideresistive film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
對於毫米波固態放大器而言,提高系統輸出功率的最有效方法就是製作出低損耗的功率合成/分波器,本論文提出適用於Ka頻段的五埠E平面Y型分岔導波管功率分波器,設計出操作頻段在32~36 GHz,反射損耗與隔離度皆大於20 dB,插入損耗介於0.2 dB的功率分波器。在設計本論文的功率分波器之前,先進行微波與毫米波功率合成/分波技術的探討,接著探討與本論文設計相關的E平面分岔導波管功率分波器的演進與設計,作為設計與改進的方向。在設計過程中,結構上將考慮金屬加工與組裝造成的影響,依序設計出柴比雪夫阻抗轉換器、導波管彎角、並找出合適的電阻膜值,將其組合成三埠E平面Y型分岔導波管功率分波器後,再推廣到本論文五埠功率分波器。
本論文將以有限元素法為基礎的模擬軟體HFSS來執行相關的模擬,並以實作與量測進行驗證。而有別於其他類似設計結構,本論文使用10 mil基板與減少阻抗轉換器數目的設計,大幅降低組裝難度、金屬加工錯誤機率,利於降低成本與元件的製作。
未來可將此設計推廣至多埠的功率分波器,應用在固態放大器的製作上。


For solid-state amplifier in millimeter-wave, the most useful method to enhance output power is to design a low loss power combiner/divider. In this thesis, we present a Five-Port E-Plane Y-Structure Bifurcated Waveguide Power Divider in Ka-band. The specifications of the proposed power divider operate at the range from 32 GHz to 36 GHz, the return loss at each port and the isolation between from output ports are required to be greater than 20 dB, the insertion loss need to be less than 0.2 dB. Before design power divider in this thesis, we make a discussion on micro-wave and millimeter-wave power combing/dividing technology, to understand how to combine power divider, then to study the evolution and design of E-Plane Bifurcated Waveguide Power Divider which related to our structure, so we can refer and improve it in our design. Finally, we present our design. In the procession of designing, it considers the effects of fabrication and assembly in our structure, and then follows the steps to design Chebyshev matching transformer, radial waveguide, and suitable value of resistive film. After that, they combine to a Three-Port E-Plane Y-Structure Bifurcated Waveguide Power Divider, and then it extends to Five-Port Power Divider of this thesis.
A finite element method based commercial CAD package, HFSS, is chosen to conduct the required simulations, and the results are verified experimentally, it is shown that the proposed design can match the measurement successfully. In this thesis, the design differs from other similar structures; we use the 10 mil substrate and reduce the numbers of impedance transformer, it is shown that the proposed design have advantages on assembly, fabrications, and low cost, so it is very suitable for fabrication.
The design in this thesis can be extend to multi-port power divider, and it will be used in solid-state amplifier in the future.


中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 序論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 論文架構 3
第二章 不同形式之微波和毫米波功率合成/分波技術 5
2.1 微波和毫米波功率合成/分波技術概述 5
2.2 各種微波和毫米波功率合成/分波技術介紹 6
2.2.1 晶片功率合成 7
2.2.2 電路功率合成 8
2.2.3 空間功率合成 12
2.2.4 其他功率合成 13
第三章 E平面分岔導波管功率分波器 14
3.1 E平面分岔導波管功率分波器概述 14
3.2 平面傳輸線式威爾金森功率分波器 14
3.3 T接面功率分波器 18
3.4 分岔導波管功率分波器 20
3.5 三埠E平面分岔導波管功率分波器 26
3.6 總結 30
第四章 五埠E平面Y型分岔導波管功率分波器 31
4.1 五埠E平面Y型分岔導波管功率分波器概述 31
4.2 基板與電阻膜 31
4.2.1 基板 32
4.2.2 電阻膜 32
4.3 五埠E平面Y型分岔導波管功率分波器設計 34
4.3.1 基板厚度 34
4.3.2 阻抗轉換器設計 35
4.3.3 E平面導波管彎角設計 40
4.3.4 三埠E平面Y型分岔導波管功率分波器設計 42
4.3.5 五埠E平面Y型分岔導波管功率分波器設計 48
4.4 實作與量測 51
第五章 結論 68
參考文獻 69


[1]F. Takeda, O. Ishida, and Y. Isoda, “Waveguide Power Divider Using Metallic Septum with Resistive Coupling Slot,” in Proc. IEEE MTT-S International Microwave Symposium Digest, Dallas, Jun. 1982, pp. 527-528.
[2]Larry W. Epp, Daniel J. Hoppe, Abdur R. Khan, and Scot L. Stride, “A High-Power Ka-Band (31-36 GHz) Solid-State Amplifier Based on Low-Loss Corporate Waveguide Combining,” IEEE Trans. On Microwave Theory Tech., vol. 56, no. 8, pp. 1899-1908, Aug. 2008.
[3]劉晏伸,毫米波三埠E平面分岔導波管功率分波器,碩士論文,國立臺北科技大學,台北,2012。
[4]H. L. Chen, X. Q. Xie, and R. M. Xu, “An Ultra Wide Band Power Divider/Combiner Based on Y-Structure Waveguide,” in Proc. Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, May 2010, pp. 853-855.
[5]HFSS and Optimetrics, Version 11.1, 2008 (Ansoft Corp., USA)
[6]Kenneth J. Russell, “Microwave Power Combining Techniques,” IEEE Trans. On Microwave Theory Tech., vol. 27, no. 5, pp. 472-478, May 1979.
[7]K. Chang and C. Sun, “Millimeter-Wave Power-Combining Techniques,” IEEE Trans. On Microwave Theory Tech., vol. 31, no. 2, pp. 91-107, Feb. 1983.
[8]J. G. Josenhans, “Diamond as an Insulating Heat Sink for a Series Combination of IMPATT Diodes,” Proceeding of the IEEE, vol. 56, no. 4, pp. 762-763, Apr. 1968.
[9]Charles T. Rucker, John W. Amoss, Gerald N.Hill, and N. Walter Cox, “Multichip IMPATT Power Combining, a Summary with New Analytical and Experimental Results,” IEEE Trans. On Microwave Theory Tech., vol. 27, no. 12, pp. 951-957, Dec. 1979.
[10]K. Matsunaga, I. Miura , and N. Iwata, “A CW 4-W Ka-Band Power Amplifier Utilizing MMIC Multichip Technology,” IEEE Journal Of Soloid-State Circuit, vol. 35, no. 9, pp. 1293-1297, Sep. 2000.
[11]K. Kurokawa and F. M. Magalhaes, “An X-band 10-Watt Multiple-IMPATT Oscillator,” Proceeding of the IEEE, vol. 59, no. 1, pp. 102-103, Jan. 1971.
[12]M. H. Chen,“A 19-Way Isolated Power Divider via the TE01 Circular Waveguide Mode Transition,” in Proc. IEEE MTT-S International Microwave Symposium Digest, Baltimore, Jun. 1986, pp. 511-513.
[13]L. Wandinger and V. Nalbandian, “Millimeter-Wave Power Combiner Using Quasi-Optical Techniques,” IEEE Trans. On Microwave Theory Tech., vol. 31, no. 2, pp.189-193, Feb. 1983.
[14]N. S Cheng, A. Alexanian, Michael G. Case, David B. Rensch, and Robert A. York, “40-W CW Broad-Band Spatial Power Combiner Using Dense Finline Arrays,” IEEE Trans. On Microwave Theory Tech., vol. 47, no. 7, pp.1070-1076, Jul. 1999.
[15]D. M. Pozar, Microwave Engineering 3rd ed.,Wiley, New York, 2005.
[16]Peter A. Rizzi, Microwave Engineering: Passive Circuits, Prentice Hall, Englewood Cliffs, New Jersey, 1988.
[17]Larry W. Epp, Abdur R. Khan, and A. Silva, “A Ka-Band Wideband-Gap Solid-State Power Amplifier: Architecture Identification,” IPN Progress Report 42-162, Jet Propulsion Laboratory, Pasadena, California, Aug. 15, 2005.
[18]Larry W. Epp, Abdur R. Khan, and A. Silva, “A Ka-Band Wideband-Gap Solid-State Power Amplifier: General architecture considerations,” IPN Progress Report 42-162, Jet Propulsion Laboratory, Pasadena, California, Aug. 15, 2005.
[19]Larry W. Epp, Abdur R. Khan, and A. Silva, “A Ka-Band Wideband-Gap Solid-State Power Amplifier: Architecture Performance Estimates,” IPN Progress Report 42-163, Jet Propulsion Laboratory, Pasadena, California, Nov. 15, 2005.
[20]Larry W. Epp, Abdur R. Khan, and A. Silva, “A Ka-Band Wide-Bandgap Solid-State Power Amplifier: Hardware Validation,” IPN Progress Report 42-163, Jet Propulsion Laboratory, Pasadena, California, Nov. 15, 2005.
[21]Larry W. Epp, and Abdur R. Khan, “Ka-Band Wide-Bandgap Solid-State Power Amplifier: Prototype Combiner Spurious Mode Suppression And Power Constraints,” IPN Progress Report 42-164, Jet Propulsion Laboratory, Pasadena, California, Feb. 15, 2006
[22]T. Ye and J. Xue, “Design of A Novel Millimeter-Wave Power Combiner,” in Proc. Cross Strait Quad-Regional Radio Science And Wireless Technology Conf.(CSQRWC), Chengdu, China, Jul. 2011, pp. 579-582.
[23]D. Ran, J. Xu, L. Wang, and M. Wang, “A Millimeter-Wave Solid-State Power Combining Circuit Based On Low-Loss Corporate Waveguide Structure,” in Proc. Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, May 2010, pp. 208-210.
[24]N. Marcuvitz, Waveguide Handbook, McGraw-Hill, New York, pp. 93-94, 1951.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔